PUCL experimental flow platform

- Modified Coulter Elite flow sorter
- 32-channels of fluorescence
- 4 angles of forwardscatter
- Side scatter
- Axial light loss

38 variables

Multicolor (polychromatic) vs. multispectral cytometry

What is the difference between polychromatic and multispectral cytometry.

Is it the number of colors?

Multicolor (polychromatic) vs. multispectral cytometry (I)

Single intensity as a parameter (usually)

Spectrum as a parameter

Multianode PMT – sensitivity and uniformity

SUPPLY VOL.: -800 V LIGHT SOURCE: TUNGSTEN LAMP SPOT DIA.: 100 µm SCAN PITCH: 50 µm

	CROSS-TALK RATIO (%)															
CH	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	100	2.9	0.6	0.2	0.1	—	—	—	—	—	—	—	—	—	—	
2	2.9	100	3.1	0.5	0.2	0.1	—	—	—	—	—	—	—	—	—	—
3	0.8	2.8	100	2.8	0.6	0.2	0.1	—	—	—	—	—	—	—	—	
4	0.3	0.8	2.7	100	3.2	0.6	0.2	0.1	—	—	—	—		—		
5	0.1	0.3	0.8	2.9	100	3.1	0.6	0.2	0.1	—	—	—	—	—	—	—
6	—	0.1	0.3	0.8	2.7	100	3.0	0.6	0.2	0.1	—	—	—	—	—	
7	—	—	0.1	0.3	0.8	2.7	100	3.0	0.6	0.2	0.1	—	—	—	—	—
8	—	—	—	0.1	0.3	0.8	2.9	100	2.9	0.6	0.2	0.1		—		—
9	—	—	—	—	0.1	0.3	0.8	2.9	100	2.9	0.6	0.2	0.1	—	—	
10	—	—	—	—	—	0.1	0.3	0.8	3.1	100	2.7	0.6	0.2	0.1	—	—
11							0.1	0.4	0.8	3.3	100	3.8	0.6	0.2	0.1	
12	CROSS-TALK						—	0.1	0.4	0.9	3.2	100	2.8	0.6	0.2	0.1
13							—	—	0.1	0.4	0.8	3.1	100	2.8	0.6	0.3
14						—	—	—	0.1	0.4	0.8	3.1	100	2.7	0.6	
15							—	—	—	—	0.1	0.4	0.9	3.2	100	2.9
16	—	—	—	—	—	—	—	—	—	—	—	0.1	0.4	0.9	3.1	100

CHANNEL

WAVELENGTH (nm)

Spectral plots

- . 5-(and-6)-carboxy-2´,7´-dichlorofluorescein diacetate (CDCFA)
- 2. 5(6)-carboxy-4',5'-dimethylfluorescein (CDMFA)
- 3. 5-sulfofluorescein diacetate (SFDA)
- 4. Cell Tracker Green 5-chloromethylfluorescein diacetate (CTG)
- 5. 5-(and-6)-carboxy-2',7'-dichlorofluorescein diacetate, succinimidyl ester (DCF)
- 6. bis-(1,3-dibutylbarbituric acid)trimethine oxonol (DiBAC₄(3))
- 7. 3,3'-dipentyloxacarbocyanine iodide (DiOC₅(3))
- 8. 3,3'-dihexyloxacarbocyanine iodide (DiOC₆(3))
- 9. Rhodamine 110

Scatter matrix

Matrix of 2-D scatterplot allow us to visualize all the possible combination of channels.

Result: we are overwhelmed by information, so the matrix is not very useful

Principal components

The principal components with the highest variance, however, do not necessarily carry the greatest information to enable a discrimination between classes.

> ^N Od Od

Linear discriminant analysis – can we use it for "gating"?

Supervised vs. Unsupervised Learning

Unsupervised learning (clustering)

- The class labels of training data is unknown
- Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data

Supervised learning (classification)

 Supervision: The training data (observations, measurements, etc.) are accompanied by labels indicating the class of the observations

New data is classified based on the training set

Method: Automated classification using support vector machines

- The SVM algorithm creates a hyperplane that separates the data into two classes with the maximum-margin. The SVM idea was proposed by Vladimir Vapnik in 1963
- For categorical variables a dummy variable is created with case values as either 0 or 1. Thus, a categorical dependent variable consisting of three levels, say (A, B, C), is represented by a set of three dummy variables: A: {1 0 0}, B: {0 1 0}, C: {0 0 1}

Classification problem

A linear discriminant function divides the feature space by a hyperplane decision surface.

The discriminant function can be come quadratic or polynomial. The curse of dimensionality makes hard to capitalize on this flexibility in practice

The final discriminant function is $g(\mathbf{x})=(x_1,x_2)=x_1x_2$, and the decision hyperplane is defined by g=0.

Advantages of SVM

Confusion matrix

- 1. 5-(and-6)-carboxy-2´,7´-dichlorofluorescein diacetate (CDCFA)
- 2. 5(6)-carboxy-4',5'-dimethylfluorescein (CDMFA)
- 3. 5-sulfofluorescein diacetate (SFDA)
- 4. 5-(and-6)-carboxy-2',7'-dichlorofluorescein diacetate, succinimidyl ester (DCF)
- 5. Cell Tracker Green 5-chloromethylfluorescein diacetate (CTG)
- 6. bis-(1,3-dibutylbarbituric acid)trimethine oxonol (DiBAC₄(3))
- 7. 3,3'-dipentyloxacarbocyanine iodide (DiOC₅(3))
- 8. 3,3'-dihexyloxacarbocyanine iodide (DiOC₆(3))
- 9. Rhodamine 110

	CDCFA	CDMFA	SFDA	CTG	DCF	DiBAC43	$DiOC_5(3)$	$\text{DiOC}_6(3)$	RH110
CDCFA	87.92 %	0.00%	0.76%	2.72%	0.00%	6.04%	1.92 %	0.64%	0.00%
CDMFA	0.24%	97.76%	0.52%	0.04%	0.00%	0.00%	0.16%	0.88%	0.40%
SFDA	0.04%	0.00%	94.36%	4.88%	0.00%	0.00%	0.00%	0.72%	0.00%
CTG	5.44%	0.00%	5.04%	86.44%	0.00%	0.20%	0.80%	2.04%	0.04%
DCF	0.00%	0.00%	0.00%	0.00%	100.00%	0.00%	0.00%	0.00%	0.00%
DiBAC43	3.72%	0.20%	0.04%	0.40%	0.00%	92.76%	0.96%	1 .92 %	0.00%
$DiOC_{5}(3)$	4.12%	0.28%	0.56%	1 .92 %	0.00%	1.32%	77.60%	14.20%	0.00%
$\text{DiOC}_{6}(3)$	1.92 %	0.12%	0.76%	1.72%	0.00%	1.24%	17.72%	76.52%	0.00%
RH110	0.00%	0.00%	0.08%	0.36%	0.00%	0.00%	0.00%	0.20%	99.36%

Misclassified events

 $DiOC_5(3)$

 $DiOC_6(3)$

Rhodamine 110

SVM classification – summary

- Clean controls required (training samples)!
- One training and validation process in completed, classification can be performed "on fly"

