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Areas of discussion

• Hyperspectral Cytometry
• Multiangle light scatter cytometry
• Advanced classification approaches
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Introduction to Multispectral/hyperspectral Imaging

• Used by NASA in the LandSAT program.
• Many applications in biology and medicine.
• Started at Purdue University in the 1960’s by Professor

David Landgrebe

http://rst.gsfc.nasa.gov/Intro/Part2_5.htmlhttp://rst.gsfc.nasa.gov/Intro/Part2_6.html

Key Wavelengths
David

Landgrebe
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PrinSkittles Components
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Classified Skittles
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Basic imaging…

Color image
Multispectral
image

Greyscale
image



Purdue University

Color composition is a mixture of spectral 
bands

Proc. SPIE  Vol. 4056, p. 50-64, Wavelet Applications VII, 
Harold H. Szu, Martin Vetterli; William J. Campbell, James R. 
Buss, Ed.
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Absorption Example

• Dutch Boy paint cards

• Colors difficult to distinguish by visual inspection
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Absorption Example

PCA Density Plot

PCA-1

PC
A
-2
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Multispectral Cytometry. Why?
• Identification of multiple spectrally 

overlapping stains (multiplexing)
• Spectral barcoding
• Spectral un-mixing (multiple stains in a single 

particle)
• Identification of intrinsic (auto) fluorescence
• Allows “intelligent systems” approach to 

classification
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Optical Design of a basic flow cytometer

PMT 1

PMT 2

PMT 5

PMT 4

Dichroic
Filters

Bandpass
Filters

Laser 

Flow chamber

PMT 3

Scatter

Sensor

Sample
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FALS SS
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Spectral Overlap makes for very complex analysis
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32 Channel Pulse
Describes the 
Entire spectrum

Spectrum becomes a parameter
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A 32 Ch PMT detector
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32 PMTs collecting 10-15nm bands
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Nanocrystals/Micro-Dots multiplexed systems

• New probes
• Potentially 1000’s of 

combinations
• Sensitive, long lived, less 

bleaching
• Difficult to make
• Will require some 

advanced classification

Code:121 2112

Add

Wash

Code:121 1110

Code:111 1020

Code:121 2110
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Advanced polychromatic cytometry

41 filters14 PMTs Hyperspectral cytometry
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Principle of Operation

US & foreign patents pending
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46 parameter cytometer
• 32 channel PM array
• 6 channels of regular PMTs
• 1 PMT for side scatter
• 5 detectors for forward scatter
• 1 channel for boxcar (pulse width)
• Time (microsecond resolution)

46 measurements
per cell
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Spectra of gated zones
phycoerythrin Rh123

chlorophyll

Bang’s 
Labs, Inc
Dyed
Beads
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PE
Rh-123Chlorophyll

Bang’s
Labs
Dyed
Beads*

These CANNOT be resolved

Except using advanced
Classification tools like PCA

“2” color analysis

These CAN now be resolved
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Spectral analysis allows classification
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Spectral “unmixing”

505 515 525 535 545 555 565

FITC filter block
Unmixed
DiOC6(3)
And bis-oxonol

Dye 1:    bis-(1,3-dibutylbarbituric acid)trimethine oxonol, DiBAC4(3)
Dye 2:    3,3'-dihexyloxacarbocyanine iodide, DiOC6(3) Green

Green

Before After



Purdue University

Spectral plots
1. 5-(and-6)-carboxy-2´,7´-dichlorofluorescein diacetate (CDCFA)
2. 5(6)-carboxy-4',5'-dimethylfluorescein (CDMFA)
3. 5-sulfofluorescein diacetate (SFDA)
4. Cell Tracker Green – 5-chloromethylfluorescein diacetate (CTG)
5. 5-(and-6)-carboxy-2´,7´-dichlorofluorescein diacetate, succinimidyl ester (DCF)
6. bis-(1,3-dibutylbarbituric acid)trimethine oxonol (DiBAC4(3))
7. 3,3'-dipentyloxacarbocyanine iodide (DiOC5(3))
8. 3,3'-dihexyloxacarbocyanine iodide (DiOC6(3))
9. Rhodamine 110

1918

1 2 3

4 5 6

7 8 9

515-535 nm
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Linear classifiers fail!

-79

-78

-77

-76

-75

-74

-73

-72

-71

-70

-69

C
an

on
ic

al
 2

0

Canonical 1

-60

-55

-50

C
an

on
ic

al
 3

-8 -6 -4 -2 0 2 4 6 8

Canonical 1



Purdue University

-50
0
50
100
150
200
250
300
350
400
450

508 530 551 571 590 608 625 640

All dyes Oxonol Events: 3373

Human Lymphocytes 



Purdue University
Confusion matrix

CDCFA CDMFA SFDA CTG DCF DiBAC43 DiOC5(3) DiOC6(3) RH110
CDCFA 87.92% 0.00% 0.76% 2.72% 0.00% 6.04% 1.92% 0.64% 0.00%

CDMFA 0.24% 97.76% 0.52% 0.04% 0.00% 0.00% 0.16% 0.88% 0.40%

SFDA 0.04% 0.00% 94.36% 4.88% 0.00% 0.00% 0.00% 0.72% 0.00%

CTG 5.44% 0.00% 5.04% 86.44% 0.00% 0.20% 0.80% 2.04% 0.04%

DCF 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00%

DiBAC43 3.72% 0.20% 0.04% 0.40% 0.00% 92.76% 0.96% 1.92% 0.00%

DiOC5(3) 4.12% 0.28% 0.56% 1.92% 0.00% 1.32% 77.60% 14.20% 0.00%

DiOC6(3) 1.92% 0.12% 0.76% 1.72% 0.00% 1.24% 17.72% 76.52% 0.00%

RH110 0.00% 0.00% 0.08% 0.36% 0.00% 0.00% 0.00% 0.20% 99.36%

1. 5-(and-6)-carboxy-2´,7´-dichlorofluorescein diacetate (CDCFA)
2. 5(6)-carboxy-4',5'-dimethylfluorescein (CDMFA)
3. 5-sulfofluorescein diacetate (SFDA)
4. 5-(and-6)-carboxy-2´,7´-dichlorofluorescein diacetate, succinimidyl 

ester (DCF)
5. Cell Tracker Green – 5-chloromethylfluorescein diacetate (CTG)
6. bis-(1,3-dibutylbarbituric acid)trimethine oxonol (DiBAC4(3))
7. 3,3'-dipentyloxacarbocyanine iodide (DiOC5(3))
8. 3,3'-dihexyloxacarbocyanine iodide (DiOC6(3))
9. Rhodamine 110
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High-resolution cytology segmentation

Conventional
RGB Image

Spectrally
segmented Image

Wavelength (nm)

Characteristic
Spectra

High spectral resolution increases utility of spectrally responsive indicator dyes
Slide from Dr. Richard Levenson, CRi, Inc.,35B Cabot Rd.,Woburn, MA 01801, www.cri-inc.com
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Analysis of complex samples (mixed nanocrystals)
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Average Spectra 
(500-750 nm)

PCA

Average Spectra

PCA PCA

CD8ECD CD3CY5CD4PECD45FITC

Average Spectra Average Spectra

Spectral Distribution of labeled lymphocytes

Note: the full (32 
point) spectrum of 
every cell in the 
analysis is performed

Variables

(CD19-Cy3
not displayed)
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PCA with 5 colors and at least 2 scatter analysis on a 32 color system

Each panel represents PCA analysis of different components
Note the mix of blue & brown cells here Now the  blue cells are separated

Now the brown cells
are separated

PCA using the 2 
scatter channels 
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Example: 5 color cell labeling

Traditional views of 2P dotplots but colors are derived from PCA populations

FL1=FITC
FL2=PE
FL3=ECD
FL4=Cy5
FL5=Cy7
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A blood sample 
incubated  with :
-CD45 FITC
-CD4 PE
-CD8 ECD
-CD3 PC5
is analyzed both with 
the 32PMT and the 
6PMTs. A PCA is run
on both data. 
Lymphocytes are 
gated out from SSC 
vs FS.

PCA (Correlation) on all the 
parameters :32channels + 
SSC+ FS(sum)+ RingB+ 
RingC+ RingD+ RingE, 

PCA (Correlation, 
Hyperspherical) on all the 
parameters : 32channels + 

SSC+ FS(sum)+ RingB+ 
RingC+ RingD+ RingE, 

PCA (Correlation) on 
4channels+SSC+ FS(sum)+ 

RingB+ RingC+ RingD+ 
RingE, 
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 c
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PCA (Correlation, 
Hyperspherical) on 

4channels+SSC+ FS(sum)+ 
RingB+ RingC+ RingD+ 

RingE, 

Comparisons of PCA results 
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20

60

100

Enrico Lugli et al, Università di Modena e Reggio Emilia
(Group of Andrea Cossarizza, University of Modena)

Classification ?

How do we bring clinical problems to the table?

From Roederer et al









Phenogram



Automated analysis



Luminex
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Luminex



Larry A. Sklar, PhD

Regents Professor of Pathology 
and Distinguished Professor of Pharmacy

Director of Basic Research, UNM Cancer Center
Director, New Mexico Molecular Libraries Screening Center

New Mexico Molecular Libraries 
Screening Center



This part is high 
throughput

50,000 cells/s
14 parameters/cell

This part is NOT high throughput
(~ 2 samples/min)

HT Flow 
Cytometry?



384 wells/10 min
1 µl/sample 

HyperCyt

Commercially 
Available



Drug Action, 
Perturbations,
Induced Signaling

Antibodies 
(Fluorophore-conjugated)

B cells

T cells

Phospho-1

Ph
os

ph
o-

2

Light Scatter
Properties

StainFix Permeabilize

Cell TypeSignaling

1. State specific antibodies: phospho-
specific antibodies and others

2.     Adopting entirely new fluorophores…. 
3.    Generation of efficient conjugation, 

purification, and testing protocols.

Thorough development of fixation protocols for 
cell lines and whole-blood (immediately 
out of patient).

Sample Specificities

p38 MAPK
JNK, cJun
AKT, PIP2, PIP3,
PKCa/b/q/d, Rsk
Raf, Mek, ERK, ELK
Rsk, Creb,
STATs,  SRC
CREB,  cJUN,  IKKa
p53 s15, s20 s37, s392
Pyk2, Shc, Fak, Src
Slp76, Zap70, Syk, Lat, Vav,
Lck, PLCg
Beta-integrins

>80 specificities

EGFR
PDGFR
cKit
VEGFR
PKA
RB
NFAT
NF-kB p65
Caveolin
Paxillin
FLT3
MEKS

Flow Cytometry for Intracellular Staining
Gary Nolan Lab



Mapping Altered Signaling in Every Tumor Sample Cell

J. Irish, Levy / Nolan labs



Advanced approaches to modeling 
based on single cell data - Nolan Lab

• Question: can you predict a signaling network based on network 
connectivity knowledge from single cell analysis?
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55

A

B

C

D

E

Schematic representation of the laser scatterometer used to perform analysis of 
bacterial colonies. A – 635-nm diode laser, B – Petri dish containing bacterial 
colonies, C – CCD camera, D – Petri-dish holder, and E – detection screen. 

>2000 scatter patterns from 
cultures of 108 Listeria strains 
were measured and analyzed
69 – L. monocytogenes
16 - L. innocua
12 - L. ivanovii
5 - L. seeligeri
3 - L. welshimeri
3 - L. grayi 
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Bacteria Rapid Detection using Optical Scattering 
Technology (BARDOT) – the new system

• BARDOT (Bacteria Rapid 
Detection using Optical 
Scattering Technology) 
designed by Hirleman group.

• Broaden the library of scatter 
images for additional bacterial 
colonies (Bhunia group)

• New technology for features 
extraction (Rajwa/Robinson 
group)

Red diode 
laser

Mirror

Petri dish

CCD 
camera
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L. grayi  LM37L. seeligeri LA 15 L. welshimeri ATCC35897

L. innocua F4248L. monocytogenes ATCC19113 L. ivanovii ATCC19119

Purdue University Patent Pending

Every organism has a very specific scatter pattern
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Listeria scatter patterns

 
L. welshimeri ATCC35897 

 
L. innocua V58 

 
L. ivanovi ATCC19119 

 
L. ivanovi SE98 

 
L. monocytogenes ATCC19113 

 
L. monocytogenes V7 

 



Purdue University

The Zernike polynomials are a set of 
orthogonal polynomials that arise in 
the expansion of a wavefront function 
for optical systems with circular 
pupils. They were introduced by F. 
Zernike in 1934: Zernike, F. 
"Beugungstheorie des 
Schneidenverfahrens und seiner 
verbesserten Form, der 
Phasenkontrastmethode." Physica 1, 
689-704, 1934.

Frits Zernike
The Nobel Prize in Physics 1953

Graphical representation of radial Zernike polynomials Zn,m in 2D 
(image size 128 x 128 pixels), and their magnitudes: A – real part 
Z10,6; B – imaginary part Z10,6; C – magnitude Z10,6; D – real part Z13,5; 
E – imaginary part Z13,5; F – magnitude Z13,5.  The larger the n-|m|
difference, the more oscillations are present in the shape. Features 
used in this study are the magnitudes of Zernike polynomials. One 
may note that the values of the magnitudes do not change when 
arbitrary rotations are applied. 

Image analysis using 2D radial Zernike polynomials



Purdue University Escherichia coli 

Nonpathogenic

E. coli K12

E. coli O25:K19:NM

E. coli O78:H11

ETEC

E. coli O142:H6 E851171

E. coli E2348169 O127:H6

EPEC

EHEC

E. coli O157:H7SEA 13A53

E. coli O157:H7 505B

E. coli O157:H7 K1

E. coli O157:H7 01

Pattern I

E. coli O157:H7 K6

E. coli O157:H7 EDL933

Pattern II

E. coli O157:H7 G458

E. coli O157:H7 G5295

Pattern III

Based on scatter patterns, we can identify everything we
have attempted so far. All of the organisms of interest have
been pathogens – mostly food borne in nature
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Sal. Typhimurium copenhagen

Salmonella Typhimurium

Salmonella Tennessee

Salmonella Kentucky

Salmonella Agona

1773-92

PT21 

PT28

PT4

13096

Sal. EnteritidisSalmonella
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L. grayi L. seeligeri L. welshimeri
L. mono-
cytogenes

L. ivanovii L. seeligeri

Hierarchical clustering based on Zernike moment invariants

Hierarchical clustering of bacterial scatter patterns. Symbols represent six different strains of Listeria belonging 
to six species: ■ L. grayi LM37, □ L. seeligeri LA15, r L. welshimeri ATCC35897, ◊ L. monocytogenes ATCC19113, 
+ L. innocua F4248, L. ivanovii V199. Numbers represent identified clusters of patterns. Note that identified 
clusters coincide with the groups of colonies from different strains.

Color map 
visualizing PC 

values
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Diode
scatter
detector

iris

blocker

Laser 
beam

Not to scale

Adding advanced light scatter to traditional systems
Optics for forward scatter
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Scatter from a particle / cylindrical flow 
channel interactive system

particle

channel

Laser 
beam

Experiments

M. Venkatapathi, G. Grégori, K. Ragheb, J. P. Robinson, E. D. Hirleman, “Measurement 
and Analysis of Angle-resolved Scatter from Small Particles in a Cylindrical 
Microchannel”, Applied Optics, Vol. 45, No. 10, pp. 2222-2232, (2006).
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Proprietary Optical Head 
from Beckman-Coulter

Sample in
Sheath

Sheath in

Piezoelectric
crystal oscillator

Scatter Sensor

Flow cell

Light scattered at different angles by each 
particle,and collected at different angles (rings).Particle

Channel

Laser 
beam

Rings of Fibers

Advanced Detection System
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AML cells were spiked into normal whole blood. FALS (standard forward scatter) versus SS (side scatter) is 
unremarkable. CD45 vs SS indicates a larger than expected population of Mono-myelocytic cells. FOA clearly 
resolves AML cell population (lower left panel). Gating on this population demonstrates light scatter (FALS vs SS) 
characteristic of Monocytes and Granulocytes.

Application of multiangle scatter to identify AML cells spiked into normal blood 

Ring e =angle e
All blue =combined rings 
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special scatter 
profile
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Image from: 
http://www.thecrookstoncollection.com/v/di
seased/neoplasms/myeloid/acute/AML-
zoom.jpg.html
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Some advanced analysis in laser 
Scanning Cytometry



Development and Validation of the LSC

LSC image combining 
fluorescence and forward 

scatter

LSCFlow

Spherotech 8-peak Rainbow 
Beads

Slide kindly supplied by Elena Holden, Compucyte

Kamentsky



iCyte® Automated 
Imaging Cytometer

Next Generation

iCys® Research 
Imaging Cytometer

iColor® Fluoro-chromatic 
Imaging Cytometer

Basic Research

Drug Discovery

Research 
Pathology

P27 in Prostate Tissue

Quantification of total 
γH2AX 

expression & foci count 

Untreated

Treated

Drug-induced apoptosis 
results in changes to cell 

morphology

Slide kindly supplied by Elena Holden, Compucyte
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Enhanced Scatter – what does it offer?
• Very low cost – plenty of signal
• Each type of cell, or organelle, has a unique scatter characteristic 
• By adding in multiple scatter tools in regular flow cytometers, we can 

probably discriminate many different cells in populations that just 
“look broad”

• Morphologically modified cells may be identified more easily
• Advanced scatter properties in imaging are also very powerful signals 

that are not frequently used
• Combining scatter, fluorescence and imaging techniques opens new 

opportunities in cellular and tissue imaging
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Conclusions

• Cytometry has many different implementations across many fields 
of science

• Hyperspectral analysis may fundamentally change the current 
concepts for detection in cell analysis 

• Spectral cytometry may be a far better alternative for specific 
applications requiring advanced classification such as diagnostics 

• Spectral cytometry can separate probes of very similar emission 
and also extract autofluorescence 

• Multiplexing of systems creates opportunities for using functional 
outputs 

• High throughput systems are possible at the single cell level
• Regardless of the technology, advanced modeling and 

classification tools are going to play much more importance in 
cytomics
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