Next-Generation Cytomics: Spectral Fingerprinting

J. Paul Robinson

SVM Professor of Cytomics Professor of Immunopharmacology Professor of Biomedical Engineering Director, Purdue University Cytometry Laboratories Deputy Director, Bindley Biosciences Center

Cell measurement technologies in 'cytomics'

"...the systematic study of biological organization and behavior at the cellular level...

....has developed out of computational imaging and flow cytometry and promises to provide essential data for systems biology."

The National Center for Applied Cytomics An NIH Research Resource

Sabbatical visit program funded by the Center as well as postdoctoral opportunities

Increased diagnostic utility Increased molecular knowledge Cytomics Axis = Integration

Increased manipulation of cell/particle function

Biophotonic Projects

- High speed spectral analysis of particles
- Angle-resolved light scattering of particles
- Whole animal spectral imaging
- Bacterial classification by angular scattering fingerprints
- Spectral endoscopy using multimodal imaging
- Calibrated fluorescence opthalmoscopy
- Microdroplet delivery/manipulation systems

Microdroplet Generation & Manipulation for Drug Delivery

Focus the advanced capabilities offered by angle-resolved light scattering on cytometry,

- Collect 32 channels of spectral data
- Collect 20-32 channels of calibrated scatter data
- Use scattering "fingerprint" analysis to extract information on size, shape, and "refractive index" distribution
- 1000-3000 particles/sec for 64 channel data

Bacterial classification by angular scattering fingerprints

>1500 scatter patterns from cultures of 108 *Listeria* strains were measured and analyzed
69 – *L. monocytogenes*16 - *L. innocua*12 - *L. ivanovii*5 - *L. seeligeri*3 - *L. welshimeri*3 - *L. grayi*

Purdue University Patent Pending

Every organism has a very specific scatter pattern

L. seeligeri LA 15

L. welshimeri ATCC35897

L. grayi LM37

Accepted for publication. Journal of Biomedical Optics, 2006

Sć

Fig. 1. Graphical representation of radial Zernike polynomials in 2D.

•Can we do the classification in real time

14

himurium tucky)

Purdue University Patent Pending

Multimode Endoscope

F

Multispectral imaging of tissue with simultaneous white light imaging

Purdue University Patent Pending

Calibrated Fluorescence Opthalmoscopy

Whole Animal Spectral Imaging

- Use AOTF based imaging system with a variety of cameras & light sources
- Multispectral imaging:
 - Use of multiple fluorescent probes.
 - Discrimination of autofluorescence.

Cell Analysis Tools

- Measurement of the optical properties of single cells
 - <u>Example</u>: blood cells separation of white blood cell populations
 - <u>Example</u>: mixed bacterial suspensions –classification by species
 - <u>Example</u>: multiplexed beads identification of analytes in fluids such as serum, CSF, cell culture medium, etc
 - <u>Example</u>: functional analysis of cell populations oxidative metabolism, enzyme, cell cycle analysis

Integration of Technologies

- Redefine the fundamental basis for flow cytometry design by integration of principles of chemical analysis and image analysis
 - Use a spectral analysis technology as opposed to a fluorescence intensity profile analysis system
 - Implement capabilities for automated classification

IMPACT:

- Next generation clinical diagnostics in real time
- Fast classification for any complex system

Hydrodynamically focused fluidics

Optical Design of a basic flow cytometer

Review of the principles that govern current flow cytometry

Basic gating and analysis population identification

Variables 1 & 2 logFITC (4) vs logPE (5) 90ls (3) vs FS (2) g 103 Scatter Forward Log-PI 1023 Π Side Scatter ^{10²}logFITC^{10³} 10° 101

104

Multicolor (polychromatic) vs. multispectral cytometry (I)

- What is the difference between polychromatic and multispectral cytometry.
- Is it the number of colors?

Multispectral Cytometry

Excitation

One full spectra per particle

History of Multispectral Imaging

A Purdue solution – Prof David A. Landgrebe

The Laboratory for Applications of Remote Sensing (LARS)

- Launching of the first weather satellite, TIROS-1, on April 1, 1960
- In 1964, the U.S. Department of Agriculture's Economic Research Service agreed to fund a small grant at Purdue to have data from the optical portion of the electromagnetic spectrum collected over Purdue agricultural sites by the Univ. Michigan equipment and analyzed at Purdue.
- LARS was formed in 1966 to take an interdisciplinary team approach to the creation and use of space-based technology for observing and managing of agricultural resources world wide.
 - Goal to analyze land masses for agricultural uses from spacecraft altitudes
 - Major problem was spatial resolution too costly at the time
- It was thus decided to rely primarily upon the *spectral* response of the subject matter, thus creating a new type of spectroscopy.
- It became the basis for the LANDSAT series of Earth satellites and is the basis for a new generation of instruments to be carried on Space Station platforms in the 1990's.

Color composition is a mixture of spectral bands

Proc. SPIE Vol. 4056, p. 50-64, Wavelet Applications VII, Harold H. Szu, Martin Vetterli; William J. Campbell, James R. Buss, Ed.

Long Island, NY

Images of soybean plants collected with Landsat system

Images from LARS Laboratory at PURDUE

0.5

0.7

0.1

5.1

1.4

1.5

1.8

2.2

2.4

2750

2250

1750

1250

Multispectral detection tools

Multiple sets of optical filters

Gratings and multianode PMTs

Multianode PMT with variety of gratings

High-resolution cytology segmentation

Slide from Dr. Richard Levenson, CRi, Inc., 35B Cabot Rd., Woburn, MA 01801, www.cri-inc.com

Current cell analysis technologies

Traditional methodology of cytometry is univariate or bivariate - the intensity of fluorescence at one or two, three, etc., given excitation/emission wavelength pairs are used to identify a phenotype.

This type of analysis focuses on the variance of a single wavelength and does not take advantage of the information content of a complete spectrum.

Why multispectral cytometry?

Advanced polychromatic cytometry

8 PMTs and 16 filters

Figure from Roederer et al

Cell/system complexity can be reduced using tools such as flow cytometry

PUCL cytometry laboratories

Figures from Roederer, et al

Multispectral Cytometry. Why?

- Identification of multiple spectrally overlapping stains (multiplexing)
- Spectral barcoding
- Potential capability of spectral un-mixing (multiple stains in a single particle)
- Identification of intrinsic fluorescence (autofluorescence classification)
- Opportunity for intelligent systems approach to classification

Nanocrystals/Micro-Dots multiplexed systems

Code:111010

Code:1210211

- New probes
- Potentially 1000's of combinations
- Sensitive, long lived, less bleaching
- Difficult to make
- Will require some advanced classification

Nano-crystals – multicolor sets

(F1)[Ungated] Z0000637.LMD : FL1 L0G/FL2 L0G

Em 575 LOG

Multianode PMT – sensitivity and uniformity

Particle Spectrometer

Fiber to photon source

Grating

Power supply and high-speed electronics for 32 channel collection (64 channel in new instrument)

tometry laboratori

A 32-channel multispectral flow cytometer

PUCL cytometry laboratories Initial Spectral data

Multianode PMT – gain and spectral filtering

Basic flow Cytometry Systems

Spectral Overlap makes for very complex analysis

Overlapping Spectra

Calibration: AOTF vs 32-MC

Calibration is accurate and against an easily obtainable calibration lamp (\$300 lamp is from Lightform, Inc www.lightform.com)

Principle of Operation

US & foreign patents pending

Spectra of gated zones

Chlorophyll

Rh-123

Spectral analysis allows classification

Develop signal processing tools suitable as a foundation for clinical instruments

Analysis of complex samples (mixed nanocrystals)

Problems?

- Problems with dispersion elements
- Low sensitivity narrow bandwidth = high spectral resolution AND low numbers of photons
- Data collection relatively expensive electronics is required at present
- Data analysis traditional methods fail.
- Quantitation is no doubt more complex
- Standards development will be required

How do we bring clinical problems to the table?

<u>Enrico Lugli et al.</u> Università di Modena e Reggio Emilia Oral Presentation Immunology (Group of Andrea Cossarizza, University of Modena)

Conclusions

- Spectral cytometry may fundamentally change the current concepts of cytometry
- Spectral cytometry may be a far better alternative for some specific applications requiring classification
- Spectral cytometry can separate probes of "apparently" the same emission (eg FITC, DIOC5, DIOC6, Oxonol, etc)
- There is less dependence on differences in intensity as there are in the spectral changes
- Traditional spectral compensation (hard to do) is not used
- There are complex problems to solve mathematically
- Much larger number of fluorochromes can be separated using the spectral cytometer (???)
- May be the choice for clinical diagnostic instrumentation

Acknowledgements:

Purdue Development Team

Not shown: Peng Xi, China; Dominik Lenz, **Germany**) Tytus Bernas, Poland; Sang Youp Lee, **S. Korea**)

Acknowledgements

Contributors – Collaborators

- Dan Hirleman (ME)
- Yinlong Sun (CS)
- Kinam Park (IP)
- Eli Asem (BMS)
- Sophie LeLevrie (BMS)
- Arun Bhunia (FS)
- Gerald J. Gregori (CNRS)

Senior Scientist

Bartek Rajwa (Biophysics)

Postdocs

- Valery Patsekin (Photonics)
- Tytus Bernas (Proteomics)
- Sang Youp Lee (Fluidics)
- Dominik Lenz (Cytometry)
- Krishna Mishra (Molecular Biology)

Graduate Students

- Wamiq Ahmed (Computational)
- Murugesan Venkatapathi (M.Eng)
- Bulent Bayraktar (Computational)
- Silas Leavesley (BioEng)
- Jia Liu (Cell Biology)
- Connie Paul (Pharmaceuticals)

Staff

- Jennie Sturgis (Imaging)
- Kathy Ragheb (Flow)
- Cheryl Holdman (Flow)
- Gretchen Lawler (CPC)
- Steve Kelley (Network)

Departments & Centers

Purdue University Cytometry Labs Basic Medical Science Biomedical Engineering Electrical & Computing Engineering Mechanical Engineering Bindley Bioscience Center Discovery Park Purdue Cancer Center

Funding:

NIH, NSF, USDA, Purdue University **Corporate:** Beckman-Coulter, Becton Dickinson, Point-Source, Parker-Hannifin, Bio-Rad, Polysciences, Bangs labs, MediaCybernetics,

