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Cell measurement technologies in
‘cytomics’

“...the systematic study of biological
organization and behavior at the
cellular level...

....has developed out of computational imaging
and flow cytometry and promises to provide
essential data for systems biology.”




The National Center for Applied Cytomics

An NIH Research Resource

Sabbatical visit program funded by the Center as well as postdoctoral opportunities
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Biophotonic Projects

High speed spectral analysis of particles
Angle-resolved light scattering of particles
Whole animal spectral imaging

Bacterial classification by angular scattering
fingerprints

Spectral endoscopy using multimodal imaging
Calibrated fluorescence opthalmoscopy
Microdroplet delivery/manipulation systems




Microdroplet Generation & Manipulation for
Drug Delivery
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Focus the advanced capabilities offered
by angle-resolved light scattering on
cytometry,

 (Collect 32 channels of

Sample in
Y Sheath spectral data
9 ch ] . Collect 20-32 channels of
Piezoelectric :
Spectral erystal oscillator calibrated scatter data

« Use scattering “fingerprint”
analysis to extract
information on size, shape,
and “refractive index”
distribution

* 1000-3000 particles/sec for
64 channel data
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Bacterial classification by angular scattering fingerprints

>1500 scatter patterns from
cultures of 108 Listeria
strains were measured and
analyzed

69 — L. monocytogenes
16 - L. innocua

12 - L. ivanovii

5 - L. seeligeri

3 - L. welshimeri

3 - L. grayi

Scatterometer

Robinson, Bhunia, Hirleman Scatterome}er

PUC

cytometry laboratories Purdue University Patent Pending



Every organism has a very specific scatter pattern

L. monocytogenes ATCC19113 L. innocua F4248 L. ivanovii ATCC19119

L. seeligeri LA 15 L. welshimeri ATCC35897 L. grayi LM37

cytometry laboratories Purdue University Patent Pending
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Fig. 1. Graphical representation of radial Zemike polynomials in 2D.
Can we do the classitication In real time
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Purdue University Patent Pending



Multimode
Endoscope

Fiber Cross Section Encloscope Heod Detoil _ \
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Purdue University Patent Pending



Calibrated Fluorescence
Opthalmoscopy




Whole Animal Spectral Imaging

* Use AOTF based imaging system with a
variety of cameras & light sources

* Multispectral imaging:
— Use of multiple fluorescent probes.
— Discrimination of autofluorescence.




Cell Analysis Tools

« Measurement of the optical properties of single

cells

— Example: blood cells — separation of white blood cell
populations

— Example: mixed bacterial suspensions —classification
by species

— Example: multiplexed beads — identification of
analytes in fluids such as serum, CSF, cell culture
medium, etc

— Example: functional analysis of cell populations —
oxidative metabolism, enzyme, cell cycle analysis




Integration of Technologies

* Redefine the fundamental basis for flow cytometry
design by integration of principles of chemical analysis
and image analysis

— Use a spectral analysis technology as opposed to a
fluorescence intensity profile analysis system

— Implement capabilities for automated classification

IMPACT:

* Next generation clinical diagnostics in real time

» Fast classification for any complex system IF[ ‘ ,F[
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Hydrodynamically focused fluidics

Ldser
Excitation

volume

Signal

*Increase Pressure:
*Wider Core

*Increased Turbulence

1-10 microseconds
per measurement

Cells pass though the chamber and are excited by the
laser light. Scatter from this excitation is directed to
detectors. A signal is collected for each cell and its
characteristics are documented as shown on left.
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Optical Design of a basic flow
cytometer

PMT 5

Sample
oLl Dichroic
Flow chamber; FI|

Bandpass
Filters



Review of the principles that govern
current flow cytometry

Single band measurement

Pulse height

Counts

Signal (fluorescence) Intensity




Basic gating and analysis
population identification
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Multicolor (polychromatic) vs.
multispectral cytometry (I)
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* What is the difference between polychromatic
and multispectral cytometry.

e |s it the number of colors?




Polychromatic Cytometry
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Multispectral Cytometry
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Multicolor (polychromatic) vs.

multispectral cytometry (1)
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The Laboratory for Applications of Remote Sensing (LARS)

History of Multispectral Imaging
A Purdue solution — Prof David A. Landgrebe

Launching of the first weather satellite, TIROS-1, on April 1, 1960
In 1964, the U.S. Department of Agriculture's Economic Research Service
agreed to fund a small grant at Purdue to have data from the optical portion of
the electromagnetic spectrum collected over Purdue agricultural sites by the
Univ. Michigan equipment and analyzed at Purdue.
LARS was formed in 1966 to take an interdisciplinary team approach to the
creation and use of space-based technology for observing and managing of
agricultural resources world wide.

— Goal to analyze land masses for agricultural uses from spacecraft altitudes

— Major problem was spatial resolution too costly at the time

It was thus decided to rely primarily upon the spectral response of the subject
matter, thus creating a new type of spectroscopy.

It became the basis for the LANDSAT series of Earth satellites and is the basis
for a new generation of instruments to be carried on Space Station platforms in

the 1990's.

Material Summarized from http://www.lars.purdue.edu/home/LARSHistory.html



Color composition is a mixture
of spectral bands

Proc. SPIE Vol. 4056, p. 50-64, Wavelet Applications VII,
Harold H. Szu, Martin Vetterli; William J. Campbell, James R.
Buss, Ed.




Long Island, NY

cytometry laboratories

Images of soybean
plants collected with
Landsat system
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Multispectral detection tools

Multiple sets of optical filters
Laser (nm) FITC, PE, Cy5-PE

Gratings and multianode PMTs
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High-resolution cytology
segmentation
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High spectral resolution increases utility of spectrally responsive indicator dyes |

Slide from Dr. Richard Levenson, CRi, Inc.,35B Cabot Rd.,Woburn, MA 01801, www.cri-inc.com



Spectral “unmixing”  Before  After

. . NN . n Green
Dye 1: bis-(1,3-dibutylbarbituric acid)trimethine oxonol, DiBAC,(3)

Dye 2: 3,3'-dihexyloxacarbocyanine iodide, DiOC(3) . G .
reen

Unmixed
D10C¢(3)
And bis-oxonol

FITC filter block
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Current cell analysis technologies

Traditional methodology of cytometry is univariate
or bivariate - the intensity of fluorescence at one or
two, three, etc., given excitation/emission
wavelength pairs are used to identify a phenotype.

This type of analysis focuses on the variance of a

single wavelength and does not take advantage of
the information content of a complete spectrum.

Why multispectral cytometry?




600
Wavelength (nm)

Emission

Figure from Roederer et al

Advanced
polychromatic
cytometry
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Cell/system complexity can be reduced using
tools such as flow cytometry

] 1407 1 o - Lasers
CasB [Rﬂ
y, 1407 nm

CasY No 4 I8 | Krypton
/ Lymjphocytes
5 /7\\52:%0 / | \

~

— - NK cells T gells B cells

: CDI6 CD56—
PE ;iss nm il o CD5t* CD5
Z4 Mg CDI6*CD56'CD8-
Cy5PE i CDI6CD56*
= 11532 nm "
Cv5.5PE 72015 | YAG ap TcR YO TR
i CD4*  CD8 vai+ <v,p vt <V
Cyv7PE : DN DP V-
d : ) CDSMICD4* CD4*  CDS*
e 625/40 : CDSMICD4~ DN DP
, / /<\ 1595 nm ‘ ‘

APC / i CD4SRA+ CD45RA-

CD62L* CD62L~ CD62L"* CD62L~

Cy5.5APC 3501632 nm 2 ™

) IIeNe IE’“E CD5T™ Tl‘z\‘ CD11ar t CD11abr
CvIAPC ~i635nm CDs7* M cD1tab CD11alo

i jiads : : i ' Diode Perforin'| ~CTL,
400 500 a00 700 800
Wavelength (nm) Bandpass
Excitation Emission filter

Figures from Roederer, et al

PUCL

cytometry laboratories



Multispectral Cytometry. Why?

* |dentification of multiple spectrally
overlapping stains (multiplexing)

» Spectral barcoding

» Potential capabillity of spectral un-mixing
(multiple stains in a single particle)

* |dentification of intrinsic fluorescence
(autofluorescence classification)

* Opportunity for intelligent systems
approach to classification




Nanocrystals/Micro-Dots multiplexed
~ systems

N il
 New probes

* Potentially 1000’s of
combinations

« Sensitive, long lived,
less bleaching

 Difficult to make

* Will require some
advanced classification
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Nano-crystals were generously supplied by Crystalplex
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Multianode PMT - sensitivity and uniformity
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Particle Spectrometer

Fiber to photon source

Grating

Power supply and high-speed
electronics for 32 channel collection
PUCL (64 channelin new instrument)

Purdue University Patent Pending



A 32-channel multispectral flow cytometer
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Multianode PMT — gain and spectral
filtering

# of Channels: |32
Gain Adjust Gain Adjust
(%): (%):

Ch: 1 ' 50.00000
2 154000000 |
3 1&o.00000 |
4 15000000
5 10,0000 |
6 | J0.00000 |
7 1 0.00000 |
8 | J0.00000 |
9 15000000 |
10 ' 50.00000
11 | gfo.00000
12 5000000 |
13 1 50.00000 |
14 o 00000
15 | Sfo.00000
16 | Zfo.00000

Now a
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4 color
cytomete
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Basic flow Cytometry Systems
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Spectral Overlap makes for very complex
analysis
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Overlapping Spectra
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Calibration: AOTF vs 32-MC

Spectral calibration

400 450 500 550 600 650 700

($300 lamp is from Lightform, Inc www.lightform.com)



Principle of Operation

Multispectral
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: Direction of
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detector |*
Classification ¢
algorithms

US & foreign patents pending



Spectra of gated zones
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Rh-123
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o X BB W

-l

‘- L

N

C:\Documerts and SettingsorDeskiop\3beads_1 txt

<Chg=<Ch1 D>.<Ch11 =<Ch12=<Ch1 Cb.<Ch1 4=<Ch15=<Ch1 S>

qast -

N DY

PRX

~ @ oo

+ &8 - @

@ NN &N - - = - a8 e B e
£1£UD=<0g 08U D= <BZY D> <8ZUD»=LZYD==<8ZY D= <5ZY D> <pTUYD==ETYD=<ZZY D= < 12 D> <0ZUI==6 WU D=8 LY D= <L Y D>

sy
Lo

e =
. | LR -

e o

3beads1_1 txt Mode : Correlation Events : 11707

R

be
-

LAY

2 £ au

)]

roan -

¥ wpy

e

20

16

These CANNOT be resolved

dvanced
tools like PCA

ing a

Except us

ication

if

Class

—
O
-
o

@
)
o
©
=)

o
©

cytometry



Spectral analysis allows classification
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Develop signal processing tools suitable as a
foundation for clinical instruments

Analysis of complex samples (mixed nanocrystals)
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Problems?

Problems with dispersion elements

Low sensitivity - narrow bandwidth = high
spectral resolution AND low numbers of photons

Data collection — relatively expensive electronics
IS required at present

Data analysis — traditional methods fail.
Quantitation is no doubt more complex
Standards development will be required
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Enrico Lugli et al, Universita di Modena e Reggio Emilia

Oral Presentation Immunology

(Group of Andrea Cossarizza, University of Modena)




Conclusions

Spectral cytometry may fundamentally change the current
concepts of cytometry

Spectral cytometry may be a far better alternative for
some specific applications requiring classification

Spectral cytometry can separate probes of “apparently”
the same emission (eg FITC, DIOCS, DIOCG6, Oxonol, etc)

There is less dependence on differences in intensity as
there are in the spectral changes

Traditional spectral compensation (hard to do) is not used
There are complex problems to solve mathematically

Much larger number of fluorochromes can be separated
using the spectral cytometer (??77?)

May be the choice for clinical diagnostic instrumentation
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