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Abstract

Recursive procedures used for sequential calculations of polynomial basis coefficients in discrete orthogonal moments produce unreliable
results for high moment orders as a result of error accumulation. This paper demonstrates accurate reconstruction of arbitrary-size images
using full-order (orders as large as the image size) Tchebichef and Krawtchouk moments by calculating polynomial coefficients directly
from their definition formulas in hypergeometric functions and by creating lookup tables of these coefficients off-line. An arbitrary
precision calculator is used to achieve greater numerical range and precision than is possible with software using standard 64-bit IEEE
floating-point arithmetic. This reconstruction scheme is content and noise independent.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Moment functions have been used as tools to extract and
quantify intrinsic information (e.g., patterns) contained in
images (Fig. 1). Moments were introduced in the contin-
uous domain more than four decades ago to digital image
processing mainly as a means of performing shape recogni-
tion (e.g., for optical character recognition). Today, contin-
uous moments such as geometric, Zernike, pseudo-Zernike,
and Legendre are pivotal in many areas of image processing
and analysis [1–7]. Practical implementations of continuous
orthogonal moments in digital image analysis involve two
main sources of error [2,3,8–10]: (i) discrete approximation
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of the continuous integrals, and (ii) transformation of the
image coordinate system into the domain of the polynomials
(e.g., transformation from Cartesian to polar coordinates for
Zernike moments).

The development of moments led to their discrete ver-
sions (e.g., Tchebichef and Krawtchouk moments) and they
are overtaking the use of their continuous-domain counter-
parts because discrete moments offer interesting qualities.
First, discretization error [2,3,10,11], which is inherent in
implementations of continuous-domain moments, does not
play a role in discrete moments, and this fact ensures that
discrete moments better satisfy orthogonality and invariance
properties. Second, reconstruction of images from discrete
orthogonal moments produces better results and is easier to
perform using matrix algebra [12,13]. Furthermore, a much-
less-mentioned property, the need for thresholding (inherent
in continuous-moment applications [5]) after reconstruc-
tion is eliminated or minimized. Consequently, higher
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Fig. 1. Two-dimensional representations (size 128 × 128) of three important orthogonal polynomials of various orders: continuous-domain orthogonal
Zernike moments [3,11,14] are global features (they give information about the whole image) and are specifically good for capturing circular features
(owing to the patterns of Zernike polynomials). Discrete-domain orthogonal Tchebichef (Chebyshev) moments [8,9,15] also give information on global
characteristics in images, and discrete-domain orthogonal Krawtchouk moments [13] can be applied locally to extract local information.

reconstruction fidelity could potentially be obtained when
discrete moments are used. This is important because recon-
struction fidelity is used as a metric for the accuracy of the
moment values from which the original image is retrieved
[2,14]. Therefore, if the reconstruction fidelity is high, the
moment values can be judged to be more precise. However,
an important problem with discrete moments is that polyno-
mial coefficients of discrete moments are usually calculated
using recurrence equations, which leads to propagation and
accumulation of numerical errors with increasing moment
order and image size. This effect precludes perfect image
reconstruction since description of all the info in an image
is possible only through computation of all moments up to
the size of the image. Attempts to solve the numerical insta-
bility problems include indirect solutions such as use of a
block-wise scheme to perform reconstruction in subsections
of an image [12], which obviates the need to use higher-
order moments. In the case of Tchebichef moments, other
methods performed modification of the recursive procedure
to construct orthonormal versions of Tchebichef polynomi-
als by modifying the scale factor involved [15], or used
Clenshaw’s recurrence formula to improve the accuracy and
speed [16]. However, noisy conditions cause instability in
these methods as well.

It is shown here that computation of discrete moments
employing arbitrary precision solves the problem of numer-
ical instability. However, it is also obvious that such an
approach would be a computational challenge, rendering
such a method infeasible for image analysis and processing
applications. The only practical way to implement such com-
putations in real time is to use some form of lookup table

(LUT). Herein we propose a simple, yet robust and practi-
cal method of achieving faultless reconstruction of images,
performed using the full spectrum (maximum size of im-
age allowed as the highest order of moments) of discrete
orthogonal moments such as Tchebichef and Krawtchouk.
This is attained by calculating discrete polynomial coeffi-
cients directly from their definitions rather than using their
recurrence relationships and by constructing LUTs of poly-
nomial basis coefficients. These coefficients can be stored
and retrieved later for use. The reconstruction fidelity is ver-
ified by two image-quality metrics: root-mean square error
(RMSE) and universal image quality index (UIQI) [17].

The organization of the paper is as follows: Section 2
covers the mathematical background. It reviews the formu-
lation of discrete orthogonal Krawtchouk and Tchebichef
moments from their respective discrete polynomials and in-
cludes the definition of universal image quality index as an
image reconstruction fidelity metric. It also covers details
on numerical precision arithmetic. Section 3 identifies and
demonstrates the numerical instability problems in image
reconstruction from discrete orthogonal moments. Section 4
provides solution to the problems set forward in Section 3
with examples. Section 5 contains conclusions for this work.

2. Mathematical background

2.1. Discrete orthogonal moments

For a 2D continuous function f (x, y), moments have
the general form Mpq = ∫ ∫

f (x, y)hpq(x, y) dx dy where
hpq(x, y) is a polynomial in x and y with powers p and q,
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respectively. The different polynomials lead to various types
of moments. If f (x, y) is a digital image, then an approxima-
tion of this integral is used: Mpq =∑

x

∑
yf (x, y)hpq(x, y).

This discretization step is the source of errors in calculation
of continuous-domain moments.

2.1.1. Krawtchouk polynomials and moments
Krawtchouk moments [13] are a set of moments formed

by using discrete Krawtchouk polynomials as the basis func-
tion set. The nth order classical Krawtchouk polynomial is
defined as

Kn(x; p, N) =
N∑

k=0

ak,n,pxk

= 2F1

(
−n, −x; −N; 1

p

)
, (1)

where x, n = 0, 1, 2, . . . , N, N > 0, p ∈ (0, 1). 2F1 is the
hypergeometric function defined as

2F1(a, b; c; z) =
∞∑

k=0

(a)k(b)k

(c)k

zk

k! (2)

and (a)k is the Pochhammer symbol given by (a)k =
a(a + 1) . . . (a + k − 1) = �(a + k)/�(a). The set of
(N + 1) Krawtchouk polynomials {Kn(x; p, N)} forms a
complete set of discrete basis functions with weight func-
tion w(x; p, N) = (

N
x
)px(1 − p)N−x and satisfies the

orthogonality condition

N∑
x=0

w(x; p, N)Kn(x; p, N)Km(x; p, N)=�(n; p, N)�nm,

(3)

where n, m = 1, 2, . . . , N and
�(n; p, N) = (−1)n((1 − p)n/p)n!/(−N)n. The following
recurrence relation:

−xKn(x; p, N) = p(N − n)Kn+1(x; p, N) − [p(N − n)

+ n(1 − p)]Kn(x; p, N) + n(1 − p)

× Kn−1(x; p, N) (4)

is used to calculate higher-order Krawtchouk polynomials. A
normalization process is applied to eliminate large variabil-
ity in the dynamic range. The set of normalized (weighted)
Krawtchouk polynomials {Kn(x; p, N)} is defined by [13]

Kn(x; p, N) = Kn(x; p, N)

√
w(x; p, N)

�(n; p, N)
. (5)

The Krawtchouk moment of order (n + m) in terms of
weighted Krawtchouk polynomials, for an N × N image
with intensity function f (x, y), is defined as

Qnm=
N−1∑
x=0

M−1∑
y=0

Kn(x; p1, N−1)Km(y; p2, M−1)f (x, y).

(6)

The image intensity function, f (x, y), can be written (the
image can be reconstructed) completely in terms of the
Krawtchouk moments (up to a certain order) as

f (x, y)=
N−1∑
x=0

M−1∑
y=0

QnmKn(x; p1, N−1)Km(y; p2, M−1).

(7)

Another property of Krawtchouk moments is their ability
to characterize the local properties (in a region of interest)
of images. The parameters p1 and p2 are used to shift the
region of interest horizontally and vertically [13]. In matrix
form [13], thanks to the separability of the 2D Krawtchouk
polynomials into 1D, the Krawtchouk moment matrix, Q, is
defined as Q = K2AKT

1 where T denotes the transpose

Q = {Qji}i,j=N−1
i,j=0 ,

Kv = {Ki(j ; pv, N − 1)}i,j=N−1
i,j=0 ,

A = {f (j, i)}i,j=N−1
i,j=0 . (8)

The image is reconstructed by A = KT
2 QK1 (using up to

a certain order of Krawtchouk moments). Calculations are
performed more easily (e.g., using Matlab) by such matrix
manipulations.

2.1.2. Tchebichef polynomials and moments
The discrete Tchebichef polynomials are defined as [9]

tn(x) = (1 − N)n 3F2(−n, −x, 1 + n; 1, 1 − N; 1),

n, x, y = 0, 1, 2, . . . , N − 1, (9)

where (a)k is the Pochhammer symbol given by

(a)k = a(a + 1) . . . (a + k − 1) = �(a + k)

�(a)
(10)

and 3F2 is the hypergeometric function defined as

3F2(a1, a2, a3; b1, b2; z)

=
∞∑

k=0

(a1)k(a2)k(a3)k(b)k

(b1)k(b2)k

zk

k! . (11)

The Tchebichef polynomials satisfy the orthogonality
property

N−1∑
x=0

tm(x)tn(x) = �(n, N)�mn, 0�m, n�N − 1 (12)

with

�(n, N) = N(N2 − 1)(N2 − 22) . . . (N2 − n2)

2n + 1

= (2n)!
(

N + n

2n + 1

)
, n = 0, 1, . . . , N − 1

and have the following recurrence relation:

(n + 1)tn+1(x) − (2n + 1)(2x − N + 1)tn(x)

+ n(N2 − n2)tn−1(x) = 0, n = 1, 2, . . . , N − 1. (13)
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Scaled Tchebichef moments are introduced [9] with the scal-
ing constant �(n, N) = Nn as t̃n(x) = tn(x)/�(n, N), which
leads to the modification �̃(n, N) = �(n, N)/(�(n, N))2.
Tchebichef moments then can be defined as [8,9]

Tpq = 1

�(p, N)�(q, N)

N−1∑
x=0

N−1∑
y=0

t̃p(x)t̃q(x)f (x, y),

p, q = 0, 1, 2, . . . , N − 1. (14)

This equation also leads to the following inverse moment
transform, which can be used for faithful (with accuracy
proportional to the higher order of moments used) recon-
struction of the original image:

f (x, y) =
N−1∑
m=0

N−1∑
n=0

Tmnt̃m(x)t̃n(x),

x, y = 0, 1, . . . , N − 1. (15)

Reconstruction from Tchebichef moments can be made
more easily in matrix form in exactly the same way as the
Krawtchouk moments. The scaling factor can be modified
to calculate orthonormal versions of Tchebichef moments
[15].

2.2. Numeric precision in computations

2.2.1. ANSI/IEEE standard 754-1985 for binary
floating-point arithmetic

Nonzero floating-point numbers are normalized, which
means they can be expressed as [18] x =±(1 + f ) · 2e. The
quantity f is the fraction or mantissa and e is the exponent.
The fraction satisfies 0�f < 1 and the exponent e is an in-
teger in the interval −1022�e�1023. Any numbers that do
not meet these limitations must be approximated by ones
that do [18,19]. The finiteness of f is a limitation on preci-
sion and this leads to roundoff errors. The finiteness of e is
a limitation on range and this leads to overflow and under-
flow. Double-precision floating-point numbers are stored (on
32-bit systems) in 64-bit words, with 52 bits for f, 11 bits
for e, and one bit for the sign of a number. The sign of e
is accommodated by storing e + 1023, which is between 1
and 211 − 2 (1 and 2046). The entire fractional part is not
f, but 1+f, which has 53 bits. However, the leading 1 does
not need to be stored. The computer integer resolution (the
maximum unsigned floating-point integer) is � = 253 − 1 =
9.007199254740991 × 1015. Therefore, any pair of num-
bers that have the same exponent but whose mantissas differ
by less than �−1 have the same representation. This is how
roundoff errors arise [6].

IEEE double-precision uses eps as the distance from 1 to
the next larger floating-point number, where eps = 2−52 ≈
2.220446049250313 × 10−16. The smallest positive nor-
malized floating-point number has f = 0 and e = −1022.
The largest floating-point number has f a little less than 1
and e = 1023. MATLAB calls these numbers realmin and

realmax. Together with eps, they characterize the standard
system [6,18,19].

realmin = 2−1022 = 2.225073858507201 × 10−308,

realmax = (1 + (1 − eps)) × 21023

= 1.797693134862316 × 10308.

If any computation tries to produce a value larger than real-
max, it is said to overflow and the result is an exceptional
floating-point value called infinity or Inf. If any computation
tries to produce a value that is undefined even in the real
number system, the result is an exceptional value known as
Not-a-Number or NaN. If any computation tries to produce
a value smaller than realmin, it is said to underflow. This
involves one of the optional and controversial aspects of the
IEEE standard [18]. Many, but not all, machines allow ex-
ceptional denormal or subnormal floating-point numbers in
the interval between realmin and eps ∗ realmin (this is the
case for MATLAB). Therefore, the smallest positive sub-
normal number is about 4.940656458412465×10−324. Any
results smaller than this are set to 0.

2.2.2. Arbitrary-precision arithmetic
In arbitrary-precision arithmetic, integers and floating-

point numbers are, respectively, represented as

Ia =
∑
i=0

Ni
pBi and Fa =

∑
i=0

Ni
p

Bi
, (16)

where Np is a fixed precision integer or floating point num-
ber and B is the base (e.g., 2, 8, 10, 16). This representa-
tion makes it possible to obviate limitations of numerical
precision and range imposed by fixed-precision arithmetic,
provided that a sufficient number of terms in the above sum-
mations is used.

2.3. Universal image quality index (UIQI)

UIQI is universal in the sense that it does not take the
viewing conditions or the individual observer into account.
UIQI is designed to model any image distortion as a com-
bination of three factors: loss of correlation, luminance dis-
tortion, and contrast distortion [17]. The index takes values
between −1 and 1 with 1 being the best. In two dimensions,
let x be the original image and y be the test (corrupted)
image. Then,

UIQI = �xy

�x�y

· 2x̄ȳ

(x̄)2 + (ȳ)2 · 2�x�y

�2
x + �2

y

= 4�xy x̄ȳ

[(�2
x + �2

y)((x̄)2 + (ȳ)2)] , (17)

where x̄, ȳ are the average intensity values of the images
and �2

x , �2
y , �xy are the local variances and covariances of x

and y images.
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Fig. 2. Various synthetic, natural, and medical test images (binary and gray-scale).
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Fig. 3. Image quality for reconstruction of ‘Shapes’ (binary) via Tchebichef and Krawtchouk moments with recurrence relations.

3. Numerical instabilities in discrete moments

It is clear from the equations of different types of polyno-
mials that lead to various moments that as the moment order

or the image size increases the numbers involved grow dra-
matically. For example, tn(x) and Kn(x) are polynomials in
xn, and the dynamic range of values will have huge varia-
tions with either large x (0 < x < N−1, image size N×N ) or
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Fig. 4. ‘Shapes’ image (binary) used for reconstruction via Krawtchouk (first row) and Tchebichef (second row) moments without LUTs.
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Fig. 5. Maximum image quality for reconstruction of test images (Fig. 2) using recurrence relations of Tchebichef and Krawtchouk polynomials. For
each image, there is also a version with added Gaussian and Salt&Pepper noise, in this order (left to right), used for reconstruction.

large n (order of moment). Real numerical problems (in cal-
culation of Krawtchouk and Tchebichef moments) lie with
multiplication of Pochhammer symbols and use of factori-
als. Large values from the results of these operations can-
not be stored using 64-bit signed integers (double precision
on 32-bit systems), which offer a range of (approximately)
±1019. Larger numbers can be stored with loss of precision
using 64-bit IEEE floating-point standard as explained in
detail in Section 2.2.1. However, this storage capacity may
prove insufficient even in the case of relatively small images
(e.g., 128 × 128 pixels) making the calculations ill condi-
tioned. In addition, division of these large values (necessary
to compute hypergeometric functions), even if technically
possible, may not be handled accurately using 64-bit arith-
metic. Therefore, numeric instabilities are bound to occur.

The problems of storage and division of these large values
can be obviated using recursive calculation of polynomial
coefficients. However, the recursive scheme results in error
accumulation. Consequently, precise computation of even a
100th-order moment may not be achieved in practice using
this scheme. Therefore, the full spectrum of moments (where
maximum moment order = maximum size of image) cannot
be used in practice and the fidelity of image reconstruction
is doomed to be low.

The numerical instability in image reconstruction using
discrete moments is demonstrated in Figs. 2–5, and 11. Cal-
culation of RMSE and UIQI (Fig. 3) demonstrates that for
256×256 images, reconstruction with discrete orthonormal
Tchebichef polynomials [15] loses stability at order 136 and
with Krawtchouk polynomials at order 219. In 128 × 128
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Fig. 6. Image quality for reconstruction of ‘Shapes’ (binary) via Tchebichef and Krawtchouk moments with LUTs.
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Fig. 7. Maximum image quality achieved for reconstruction of all test images (Fig. 2) using LUTs. For each image, there is also a version with added
Gaussian and Salt&Pepper noise (same noise as in images in Fig. 5), in this order (left to right), used for reconstruction.

images, these orders are 97 and 124, respectively (data not
shown). Fig. 4 shows (for binary ‘Shapes’ image) the re-
constructed images at the point right after the recurrence
relations start to fail visually; lines begin to appear in recon-
structed images after order 219 for Krawtchouk moments
and 136 for Tchebichef moments. Hence, beyond these lim-
its, image quality of the reconstruction does not improve but
instead degrades significantly. Fig. 5 displays (for all test im-
ages used in Fig. 2) the RMSE and UIQI for reconstructed
images using both Krawtchouk and Tchebichef moments
with orders at their breaking points (219 and 136, respec-
tively). It can be seen that, although the same order is used
for reconstruction, the image quality varies substantially

among different images in both metrics. This shows that not
only does the reconstruction using recurrence relations have
a limited success but also this success is content-dependent.

4. Problem solution and experimental results

In order to eliminate the need for recursive moment cal-
culation we used GNU bc (basic calculator) software [20]
(with base 10) that has arbitrary numeric precision capabil-
ity. We avoided renormalization of the recursive relations
and calculated the Krawtchouk and Tchebichef polynomial
coefficients directly from their definitions [9,13,21] in hy-
pergeometric functions (in Eqs. (2) and (11)). We calculated
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Fig. 8. ‘Shapes’ image (binary) used for reconstruction via Krawtchouk (first row) and Tchebichef (second row) moments with LUTs.

Fig. 9. Aerial image with various noise (Gaussian with SNR = 12,
Salt&Pepper SNR = 12, and Speckle SNR = 13).

the coefficients for a set of image sizes up to 512 × 512 and
formed LUTs. The LUTs were applied for decomposition
and subsequent reconstruction. This technique made it pos-
sible to obtain faithful reconstruction of an image from its
respective sets of moments, as demonstrated in Figs. 6–10,
and 12. This process has two advantages: it produces very
accurate reconstruction results, and even though the com-
putations using the arbitrary precision calculator are much
slower than the recurrence scheme (since LUTs are formed
off-line in advance, stored and retrieved later), the decompo-
sition and reconstruction are performed rapidly in practice.

We used several images (binary and gray-scale) with
different types and content to demonstrate our approach.

We present here the results for the images in Fig. 2. Fig. 6
shows the image quality of exact reconstruction with dis-
crete Krawtchouk and Tchebichef moments using LUTs;
the image quality continues to increase and reaches the min-
imum/maximum possible (0 for RMSE and 1 for UIQI) by
both quality criteria. Fig. 7 shows the image quality, which
is much better than that obtained without LUTs, attained
for all test images at order 255 (maximum order possible)
using LUTs. Fig. 8 shows an example of such a reconstruc-
tion. Fig. 10 shows the same trend as in previous figures
for an aerial image with various noise types (Gaussian,
Salt&Pepper, Speckle) that are added artificially (in Fig. 9).
The direct calculation of the polynomial coefficients, which
leads to LUTs, is faithfully able to retrieve the details (high-
frequency components) of the original images and noise
as the image quality metrics continue to increase/decrease,
whereas reconstruction without LUTs fail at a certain or-
der (as mentioned above, 219 for Krawtchouk and 136 for
Tchebichef moments; bold and thick lines represent recon-
struction quality without using LUTs and thin lines show
reconstruction with LUTs).

Fig. 11 shows a trend for the 512 × 512 cameraman im-
age similar to that shown for 256 × 256 images. Image re-
construction (for the 512 × 512 cameraman image) from
Krawtchouk moments using recurrence relations begins to
show significant visual degradation when (up to) 390th-order
moments are used. Tchebichef moments suffer similar fa-
tal degradation starting around (up to) 195th order. Fig. 12
shows that all the above problems can be solved using the
solution proposed in this paper.

Tables 1 and 2 show a numerical comparison between
sample elements of (Tchebichef) 128 × 128 T1 matrices,
calculated using fixed-precision and arbitrary-precision
arithmetic (where 65 digits after decimal point is used),
respectively. T1 matrices were constructed similar to the
Krawtchouk polynomial coefficient matrices (Eq. (8)). Us-
ing fixed-precision numbers, the calculations fail to produce
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Fig. 10. UIQI on reconstruction of aerial image with various noise (Fig. 9) using recurrence relations (dark lines) and LUTs (thin lines).

Fig. 11. ‘Cameraman’ image (512 × 512) used for reconstruction via Krawtchouk (first row) and Tchebichef (second row) moments without LUTs.

Fig. 12. ‘Cameraman’ image (512 × 512) used for reconstruction via Krawtchouk (first row) and Tchebichef (second row) moments with LUTs.
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Table 1
Sample elements of the 2D Tchebichef polynomial matrix (128 × 128) with fixed-precision arithmetic

T1 112 118 122

112 3.883133971546536 × 10−8 6.899999754031292 × 10−6 0.07152881861427
118 7.444829697101211 × 10−8 0.00700245916439 1.212700579919720 × 102

122 2.694365402757248 × 10−6 0.43695029358600 1.043217733319892 × 104

Table 2
Sample elements of the 2D Tchebichef polynomial matrix (128 × 128) with arbitrary-precision arithmetic (in fixed-precision format of Matlab)

T1 112 118 122

112 3.865328927993463 × 10−8 8.202945491700744 × 10−13 7.114574118322008 × 10−17

118 5.029784792226311 × 10−11 4.555247927459617 × 10−16 2.400877599188298 × 10−20

122 2.097849876633264 × 10−13 1.122713158805788 × 10−18 4.327564934163435 × 10−23

meaningful results (instead of very small numbers, large
numbers are obtained for higher-order moment element in
the matrix). It should be mentioned that although our results
are very accurate, they are not perfect as can be seen from
some error residues shown by the image quality metrics in
Fig. 7. This can be easily attributed to the fact that even
though the arbitrary-precision arithmetic (65 digits after the
decimal point) is used for the calculations and the results are
stored in LUTs, the reconstruction process uses these LUTs
in Matlab, which can retain only up to 16 digits after the
decimal point.

5. Conclusions

The use of discrete orthogonal Krawtchouk and
Tchebichef moments eliminates inherent errors that exist in
continuous-domain moments, offers better representation of
image content, and hence allows better image reconstruc-
tion. However, the moments suffer from accumulating error
owing to the use of polynomial recursion in their calcula-
tions. This paper gives an accurate reconstruction scheme
via formation of LUTs from direct calculation of polynomial
coefficients of discrete moments using an arbitrary precision
calculator. Additionally, through examples covering various
images (binary, gray-scale, medical, checker-pattern, etc.),
this simple yet efficient method is shown to be universal,
robust, content independent, and noise independent.
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