
Digital microbiology: detection and classification of unknown
bacterial pathogens using a label-free laser light scatter-sensing

system

Bartek Rajwaa* M. Murat Dundarb, Ferit Akovab, Valery Patsekina, Euiwon Baec, Yanjie Tangd

J.Eric Dietze, E. Daniel Hirlemanf, J. Paul Robinsona, and Arun K. Bhuniad.

aBindley Bioscience Center, Purdue University, 1203 W. State Street, West Lafayette, IN 47907;
bComputer & Information Science Dept., Indiana University Purdue University Indianapolis

(IUPUI), 723 W. Michigan St., SL 280C, Indianapolis, IN 46202
cSchool of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907

dDepartment of Food Science, 745 Agriculture Mall Drive, West Lafayette, IN 47907
eHomeland Security Institute, Purdue University, Mann Hall, 203 S. Martin Jischke Drive,

West Lafayette, IN 47907
fSchool of Engineerning, University of California, Merced, 5200 North Lake Rd., Merced, CA 95343

ABSTRACT
The majority of tools for pathogen sensing and recognition are based on physiological or genetic properties

of microorganisms. However, there is enormous interest in devising label-free and reagentless biosensors that

would operate utilizing the biophysical signatures of samples without the need for labeling and reporting bio-

chemistry. Optical biosensors are closest to realizing this goal and vibrational spectroscopies are examples of

well-established optical label-free biosensing techniques. A recently introduced forward-scatter phenotyping

(FSP) also belongs to the broad class of optical sensors. However, in contrast to spectroscopies, the remarkable

specificity of FSP derives from the morphological information that bacterial material encodes on a coherent

optical wavefront passing through the colony. The system collects elastically scattered light patterns that, given

a constant environment, are unique to each bacterial species and/or serovar. Both FSP technology and spectro-

scopies rely on statistical machine learning to perform recognition and classification. However, the commonly

used methods utilize either simplistic unsupervised learning or traditional supervised techniques that assume

completeness of training libraries. This restrictive assumption is known to be false for real-life conditions, re-

sulting in unsatisfactory levels of accuracy, and consequently limited overall performance for biodetection and

classification tasks. The presented work demonstrates preliminary studies on the use of FSP system to classify

selected serotypes of non-O157 Shiga toxin-producing E. coli in a nonexhaustive framework, that is, without

full knowledge about all the possible classes that can be encountered. Our study uses a Bayesian approach to

learning with a nonexhaustive training dataset to allow for the automated and distributed detection of unknown

bacterial classes.
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1. INTRODUCTION
Traditional bacteria recognition methods based on antibodies or genetic matching remain labor intensive and

time consuming, and involve multiple steps. Recently a number of new biosensors designed to perform classi-

fication of bacteria in a label-free manner have been reported in the literature.1, 2 These tools are label-free in
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the sense of not employing fluorescence labels, but using alternative detection modalities such as surface plas-

mon resonance, amperometric and potentiometric measurements, or electrochemical impedance spectroscopy.

However, these biosensors still utilize traditional biological recognition elements: enzymes, antibodies, and nu-

cleic acids. The only well researched and broadly utilized techniques capable of true reagentless fingerprinting

of bacteria are vibrational spectroscopic methods (Raman and IR),3–9 autofluorescence-based observations,10, 11

light-scattering analysis of bacterial suspensions12–15 or colonies,16–20 and MALDI-TOF-based systems.21–24

The elastic light-scatter fingerprinting system (also called BARDOT – BActeria Rapid Detection using Opti-

cal scattering Technology) developed at Purdue University has shown great promise for distinguishing bacterial

cultures at the genus, species, and strain level for Listeria, Staphylococcus, Salmonella, and Vibrio.16–18 BAR-

DOT uses a sophisticated light-scatter analysis to extract a forward light–scatter phenotype (FSP) from bacterial

cultures on the surface of agar in a semi-solid state.16, 17, 25 The FSP information is subsequently used by a

pattern-recognition system to assess the possible origin of the distinctive forward-scattering pattern. It has

been successfully shown that scattering properties of Listeria, E. coli, Salmonella, Staphylococcus, and Vib-
rio colonies can be used to differentiate the species occurring in food samples as well as those isolated from

experimentally infected animals.18

In this report we summarize our preliminary results demonstrating feasibility of forward-scatter phenotyping

for classification of Shiga toxin–producing Escherichia coli (STEC) colonies, specifically non-O157 serotypes.

STEC can cause diarrhea, bloody diarrhea (hemorrhagic colitis), and hemolytic uremic syndrome (HUS). The

detection of non-O157 STEC is not widely practiced and few laboratories are able to detect non-O157 strains.

This is primarily because many non-O157 STEC strains lack the characteristics of O157 STEC, such as delayed

fermentation of sorbitol and the hemolytic activity on hemolysin agar, and therefore cannot be identified on the

routinely used modified sorbitol-MacConkey agar (SMAC).26, 27

About 70% of non-O157 STEC isolated from humans falls into six serogroups: O26, O103, O111, O121,

O45, and O145. It has been estimated that in the United States about half the diarrheal illnesses caused by

STEC are due to O157 and about half to subtypes of E. coli other than O157; and some of these illnesses due to

organisms other than O157 can be manifested by symptoms just as severe as those caused by STEC O157. In

this report we attempt to detect three of these serotypes (O26, O103, and O111) in addition to O157.

Figure 1. Examples of laser light scatter patterns formed by E. coli
colonies. A – O157:H7, B – O26:H11. Pseudocolor look-up table

added to visualize intensity differences.

Previously, we demonstrated that classifica-

tion of Salmonella phenotypes not only can be

successfully performed with access to exhaus-

tive training libraries, but can also be imple-

mented in a nonexhaustive regimen, i.e., with-

out assuming that access to the complete train-

ing set is always available. The rationale be-

hind the nonexhaustive classification is based on

the observation that the number of Salmonella
serotypes is too large to allow for a practi-

cal traditional statistical machine learning ap-

proach. The Salmonella results showed that dif-

ferent serotypes indeed exhibit distinguishable

forward-scatter phenotypes and can be modeled

as well-defined multidimensional Gaussians in the feature space. Although this study demonstrated the feasi-

bility of our approach, it also promoted speculation that a more complex distribution of phenotypes may lead

to classification problems that ultimately would not be solvable with the help of parametric methods, i.e., tech-

niques assuming some level of knowledge about the nature of the distributions. In this report we demonstrate
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our first attempt to apply a nonexhaustive learning technique to the problem of detecting non-O157 STEC. We

show promising preliminary results for models assuming both exhaustive and nonexhaustive training libraries,

and we conclude that the complex nature of non-O157 STEC phenotype distribution indeed may require a new

generation of statistical machine learning methods to cope with the extraordinary diversity of E. coli.

2. METHODS
2.1 Cell cultures
Seven serotypes of E. coli (O157:H7, O26:H11, O103:H2, O103:H6, O103:H11, O111:H8, and O111:NM)

from the USDA ARS Culture Collection and collection of the Department of Food Science, Purdue University,

were plated on medium and incubated at 37°C for 12-13 h, depending on the growth speed. MacConkey agar

with sorbitol (SMAC) was used as the growth medium. Plates were incubated at 37°C until colony size reached

1.3 0.2 mm in diameter before analysis using BARDOT.

2.2 Forward-scatter phenotyping system
The current implementation of BARDOT consists of three major components: colony counter/locator, forward-

scatter measurement device, and 2-D motorized stage. The forward-scatter measurement device is composed

of a laser diode module (VHK Circular Beam Visible Laser Diode 0.95 mW, 635 nm), and a monochromatic

CMOS image sensor (PL-B741U-BL, 1.3 MP, PixeLINK, Ottawa, ON, Canada) with 1280 x 1024 resolution and

equipped with a USB interface. The PL-B741 is a high-performance camera based on the Cypress IBIS5 CMOS

global shutter progressive scan sensor with a 2/3 optical format and 27 fps output. The BARDOT system also

uses the camera to operate in colony-counting mode with the assistance of a Tamron Mega Pixel M118FM08

lens with manual iris (Tamron USA, Inc, Commack, NY). The motion control is provided by stepping motors

(Velmex Vexta Type 17, Velmex, Bloomfield, NY) which are driven by the 2-axis programmable stepping-motor

controller (VXM1-1, Velmex, Bloomfield, NY).

2.3 Forward-scatter pattern analysis
Although the resultant scatter patterns could in theory be analyzed on the basis of a rigorous mathematical model

of scatter, the complexity of the problem precludes easy application of this straightforward solution. Instead we

developed a processing pipeline based on the idea of employing a statistical machine learning model to solve the

inverse light-scatter problem for bacterial colonies. This approach has previously been successfully used with

smaller-scale problems, such as evaluation of size and refractive indices of single particles.

The features extracted from scatter patterns are, in principle, readily quantified. The polar nature of the

scattering signatures as exemplified in Figure 1 suggests decomposition using a set of orthogonal polynomials

with radial characteristics. Our current implementation of the classification system employs pseudo-Zernike

moments (PZMs).28–30

To compute the pseudo-Zernike moments of a given image, the center of the image is taken as the origin

and pixel coordinates are mapped to the range of the unit circle. Rotational invariance is obtained by using the

magnitudes of the pseudo-Zernike moments as features. The details of pseudo-Zernike moment computation

can be found in our published reports.16, 18

Another set of tools used in the reported work for quantifying patterns are gray-level co-occurrence matrices

(GLCMs). The GLCMs are routinely employed to quantify the number of occurrences at various distances and

angles of pixel intensity values with respect to each other.31, 32 The GLCMs are used to extract 14 low- and

high-frequency (depending on the pixel-to-pixel distance used in the co-occurrence matrix) texture properties

(so-called Haralick texture features). We used a total of 84 GLCMs-based features computed for distances

between 1 to 6 pixels.
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The best features were selected using a wrapper approach provided by varSelRF package for R.33, 34 This

package implements a feature selection technique using random forests, and it is built upon the randomForest
package which implemented the algorithm proposed by L. Breiman.35

2.4 Automated classification
Two different classification systems were used. The exhaustive system assumed that all the classes which may

be encountered are accounted for in the training library. Therefore an “exhaustive” library is expected. This

detection/classification system has been implemented using both Bayesian methods (data not shown) and a

support vector machine algorithm with an RBF kernel using e1071 package for R.36, 37

The nonexhaustive classification regimen does not make an assumption regarding the completeness of the

classes list in the training set. Instead it formulates the problem as a combination of classification and detection.

A new instance is assumed to be either a member of one of the existing classes or a member of a new “un-

known” class. The new class is progressively recovered from the emerging distribution with the arrival of new

instances. The nonexhaustive statistical machine learning approach solves the problem of encountering emerg-

ing pathogens for which there are no available examples in the database. The details of the implementation and

description of the classification methodology are provided in our recent publications.19, 38

−30 −20 −10 0 10 20 30

−1
0

−5
0

5

Principal component 1

P
rin

ci
pa

l c
om

po
ne

nt
 3

Figure 2. Principle component analysis plot

demonstrating mixture of E. coli STEC scatter

patterns. Note that O157:H7 (shown as green) is

the only class which can be separated using this

unsupervised approach in linear space.

Briefly, we assume that each sample, characterized by a

feature vector, xi, is distributed according to a normal distri-

bution with mean vector, μ, and a covariance matrix, Σ, i.e.,

xi ∼ N(μk,Σk). This approach uses maximum likelihood de-

tection evaluated for all the classes in the training dataset to deter-

mine presence of emerging class. Once a sample is determined

to be a novelty, a new class is generated and the current set of

known classes is augmented with this class. If a sample is not

a novelty, then the algorithm check if the class maximizing the

likelihood is a previously discovered class that is not one of the

initially known classes. If yes, the class parameters are updated;

otherwise they are not updated. The mean vectors, μk, are es-

timated by the sample mean. An inverted Wishart prior with m
degrees of freedom and a scale matrix, Ψ is defined over the co-

variance matrices, i.e., Σk ∼ W−1(Ψ,m) and the covariance

matrices for each class are estimated by the posterior mean.

In the described approach, the labels of the newly created

classes are not known until they are analyzed by an independent

method. To differentiate these classes from those initially avail-

able in the training library we use the concept of labeled vs. unlabeled classes, where the terms labeled and

unlabeled refer to existing and newly generated classes, respectively. The parameters of the labeled classes are

estimated once in the beginning, whereas those of unlabeled classes are recursively updated as more colonies

are assigned to these classes via sequential classification. When a new class is generated it will initially contain

one sample. Therefore the sample estimate of Σk in this case will be ill conditioned. Estimating Σk by the

posterior mean alleviates this situation as long as the number of labeled classes in the training dataset allows

for a robust estimate of Ψ. Thus, the core assumption of our algorithm is that the parameter sets defining the

class-conditional distributions originate from a common prior distribution and that the number of labeled classes

is large enough to obtain a robust estimate of this distribution.
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3. RESULTS
The tested dataset contained FSPs of several thousand colonies collected over a number of days. A complete

set of features was extracted using a custom-developed BugBuster software package. A total of 149 features,

including 65 pseudo-Zernike moments and 84 GLMC-based features, was computed for every colony. The FSPs

of all the colonies growing on different plates and on different days were pooled together to account for natural

biological variability. Three hundred and twenty random phenotypes (instances) per class were drawn from the

data pool for training and crossvalidation.

Figure 3. A dendrogram illustrating phenotypic

similarities between tested serotypes of E. coli

Two different classification models were used for training. In

the first one 4 classes of STEC were defined by pooling all the

organism expressing the same O-antigen. The second model de-

fined classes on the basis of O and H serotypes. Additionally,

every model could be used directly in a multi-class fashion or

employed in a two-step process in which O157:H7 is classified

(and eliminated from the dataset) first, followed by classifica-

tion of the remaining non-O157 samples. For every model an

overall multi-class classification score was calculated, as well as

individual scores that were obtained assuming a one-vs-all case.

Therefore, the individual classification scores show the ability of

a classifier to correctly select only the given class from the mix-

ture of all the other classes, effectively reducing the task to a

two-class problem.

O-antigen Sensitivity Precision F-measure Specificity Accuracy

O103 0.86 0.90 0.88 0.98 0.96

O111 0.95 0.94 0.95 0.99 0.98

O157 1.00 1.00 1.00 1.00 1.00

O26 0.88 0.87 0.87 0.98 0.96

Table 1. Classification success for 4-class model.

The unsupervised feature reduc-

tion by PCA demonstrated that O157

was easily separable in the linear

space. Therefore, it was expected

that detection of this group can be

performed with a very high level of

sensitivity and specificity regardless

of the assumed model. Indeed, as Ta-

bles 1 and 2 demonstrate O157:H7 can be classified with accuracy, sensitivity, and specificity of 100% for both

the 4-class model and the 7-class model. The overall accuracy for the 4-class model is indeed slightly higher

higher than 7-class model, but the difference is not large. Owing to the characteristic change in colony color

when grown on SMAC the O157 serotype is the easiest to detect and separate using light-scatter properties. The

individual classification success for non-O157 classes depends on a model and expressed as F-scores varies from

0.8 to 0.95. The lowest classification success was noted for O26:H11 serotype.

Serotype Sensitivity Precision F-measure Specificity Accuracy

O157:H7 1.00 1.00 1.00 1.00 1.00

O26:H11 0.81 0.81 0.81 0.98 0.96

O103:H2 0.84 0.88 0.86 0.99 0.97

O103:H6 0.92 0.93 0.92 0.99 0.99

O103:H11 0.87 0.88 0.87 0.99 0.97

O111:H8 0.92 0.88 0.90 0.99 0.98

O111:NM 0.92 0.94 0.93 0.99 0.99

Table 2. Classification success for 7-class model.

The models used in the second

part of the study did not assume ac-

cess to complete information regard-

ing the classes. It was expected that

any new instance submitted for clas-

sification might in fact belong to a

new class for which the current sys-

tem had no examples. This type of

classification reflected a real-life sit-

uation in which a laboratory would
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not have information available about an emerging pathogen that might be encountered in tested samples at the

outset of an outbreak. The problem of library nonexhaustiveness is not limited to biophysical methods such

as BARDOT, Raman spectroscopy, or IC-MALDI-TOF. In fact, this issue is even more limiting in the case of

molecular methods that rely on particular genetic information to produce a meaningful outcome. The biophysi-

cal techniques will produce a measurement regardless of the quality of a training library. However, the presence

of an unknown class will render all the automated classification results untrustworthy unless a mechanism exists

to detect the presence of a new population.

Detected class AUC SD

4-class model

O103 0.871 0.009

O111 0.943 0.006

O26 0.829 0.009

7-class model

O103:H11 0.797 0.020

O103:H2 0.797 0.012

O103:H6 0.873 0.008

O111:H8 0.918 0.011

O111:NM 0.949 0.006

O26:H11 0.852 0.015

Table 3. AUC values illustrating per-

formance of the emerging pathogen-

detection system for 4-class and 7-

class models. The O157 serotype

was assumed to be always known.

In order to simulate such a detection process we removed one known

class at a time from the training library and performed an in silico experi-

ment during which unknown instances mixed with data from known classes

were analyzed by our classifier. The results summarized in Table 3 show

that the BARDOT system was indeed able to recognize a large portion of

the unknown instances and raise an alarm about the presence of an emerging

pathogen not represented in the library. The detection success is reported

as area under the receiver operating characteristic (ROC) curve, which is a

plot of the detector sensitivity, or true positive rate, vs. the false positive

rate (1 − specificity or 1 − true negative rate), as the detector discrimina-

tion threshold is varied. The area under the curve (AUC) value is equal to

the probability that our emerging-pathogen detector will rank a randomly

chosen unknown pathogenic colony higher than a randomly chosen known

one. The performance of our detector varies from 0.79 for O103:H11 and

O103:H2 to over 0.94 for O111.

In order to compare the relationship between the 7-class and 4-class

models we computed an FSP-based 7-class dissimilarity score. The dissim-

ilarity between classes was defined as a normalized classification error for a

two-class linear SVM classification problem, with no prior feature selection applied. Therefore the dissimilarity

score reflected the overlap between classes in feature space. Classes with higher similarity (lower dissimilarity)

overlap more than do classes with lower similarity. The resultant dendrogram is presented in Figure 3. The

most interesting feature of the constructed hierarchy is the fact that O103 class carrying the same O-antigen

but different H-antigens did not cluster together. This may indicate an influence of H-antigens on the resultant

phenotype or problems with reproducibility.

4. DISCUSSION AND CONCLUSIONS
Traditionally the presence of E. coli O157 is detected employing the SMAC technique. However, in contrast

to O157:H7, which grows easy-to-distinguish pale colonies when plated on SMAC, most non-O157 STEC

colonies appear pink and are visually indistinguishable. Owing to the color change, the light-scattering pattern

of pale O157 colonies is dramatically different from other collected patterns and can be readily distinguished, as

illustrated in Fig 3.

The distribution of forward-scatter features of the non-O157 STEC serotypes of E. coli reflects a very higher

level of biological phenotypic diversity. Our 4-class model assumed that only the O antigens could effectively

affect the FSP; however, the classification results obtained from studies of the 7-class model demonstrated that

this assumption might be wrong. We were able to detect minor phenotype changes in classes carrying various

H antigens. Although our previous work indicated that differences in lipopolysaccharide (LPS) content could

be implicated in formation of distinguishable FSPs, the new data suggest that the phenotypic variability may be
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also affected by various H antigens. This problem requires future research, as it is too early to speculate on the

role of H antigen on colony micro- and nanostructure.

Although there is no standardized detection method for non-O157 STEC serotypes, there are techniques

available that can be used to serotype non-O157 organisms. Among them are a new set of differential media for

O26, 103, O111, and O145, immunomagnetic separation with specific antibodies, and molecular methods.27, 39

Regrettably, none of these methods is fast and simple, and all require an enrichment step. Moreover, the molecu-

lar methods do not really identify the organism causing illness – they can merely detect the presence of particular

genes. Therefore unless the organism is isolated the molecular methods cannot determine which organism car-

ries these virulence genes. This constraint places additional stress on the importance of cultural approaches and

illustrates why alternative rapid methods working in conjunction with selective media for classification of E.coli
are highly desirable.

Recently it has been demonstrated that some Shiga-toxin producing non-O157 serotypes (O165:H25, O26:H11

and H32, O156:H25) can be recognized using IC-MALDI-TOF technique.24 These results provide evidence that

direct label-free phenotypic determination of O-serogroups is indeed possible. Since the O-antigen is part of the

LPS of the Gram-negative outer membrane, it is expected that optical methods sensitive to subtle differences in

LPS content can also be utilized to detect organisms carrying various O-antigens. It has been previously demon-

strated that difference in LPS content can indeed be implicated as one of the sources of diversity in forward-

scatter patterns formed by interaction of a laser beam with bacterial colonies. Compared to IC-MALDI-TOF the

FSP-base classification required no laborious pre-treatment of samples. The bacterial colonies could be inter-

rogated while intact on agar plates, and no additional manipulation or handling of samples was required. The

sample-analysis cost as well as the cost of required instrumentation also favors the optical approach.

The limited scope of the demonstrated classification system, and the classification accuracy of the FSP

methodology at the current stage of technique development would not allow it to be competitive with established

PCR-based or immunological methods as the final determination protocol of E. coli serotype. However, since

FSP method shows a lot of promise we work on expanding or FSP-based classifier to other common non-O157

STEC including O121, O145, and O45. The access to an inexpensive, label-free, and nondestructive detection

system would provide the chance to communicate preliminary positive results to submitting physicians without

delay, although with the clarification that results should be correlated with patient symptoms, and a follow-up

test would be performed using molecular methods.26, 27 The fact that FSP can be performed simultaneously

with standard automated colony-counting procedures, does not require any special media nor any biochemical

treatment, and is nondestructive, allowing the plates to be further processed by any confirmatory techniques

makes it a good candidate for inexpensive and easy to implement STEC detection method.

ACKNOWLEDGMENTS
The project was supported by grants number 5R21AI085531-02 and 1R56AI089511-01 from the National In-

stitute of Allergy and Infectious Diseases (NIAID), and through a cooperative agreement with the Agricultural

Research Service of the US Department of Agriculture project number 1935-42000-035 and the Center for Food

Safety and Engineering at Purdue University.

REFERENCES
1. O. Lazcka, F. J. D. Campo, and F. X. Muoz, “Pathogen detection: a perspective of traditional methods and biosen-

sors,” Biosensors & Bioelectronics 22, pp. 1205–1217, Feb 2007. PMID: 16934970.

2. A. K. Bhunia, “Biosensors and bio-based methods for the separation and detection of foodborne pathogens,” Ad-
vances in Food and Nutrition Research 54, pp. 1–44, 2008. PMID: 18291303.

Proc. of SPIE Vol. 8029  80290C-7

Downloaded from SPIE Digital Library on 28 Feb 2012 to 128.210.61.92. Terms of Use:  http://spiedl.org/terms



3. D. Helm, H. Labischinski, G. Schallehn, and D. Naumann, “Classification and identification of bacteria by Fourier-

transform infrared spectroscopy,” Journal of General Microbiology 137(1), pp. 69–79, 1991.

4. D. Naumann, D. Helm, and H. Labischinski, “Microbiological characterizations by FT-IR spectroscopy,” Nature 351,

pp. 81–82, May 1991. PMID: 1902911.

5. P. Rsch, M. Schmitt, W. Kiefer, and J. Popp, “The identification of microorganisms by micro-Raman spectroscopy,”

Journal of Molecular Structure 661-662, pp. 363–369, Dec 2003.

6. C. Yu, J. Irudayaraj, C. Debroy, Z. Schmilovtich, and A. Mizrach, “Spectroscopic differentiation and quantification

of microorganisms in apple juice,” Journal of Food Science 69(7), pp. 268–272, 2004.

7. M. Gupta, J. Irudayaraj, C. Debroy, Z. Schmilovitch, and A. Mizrach, “Differentiation of food pathogens using FTIR

and artificial neural networks,” Transactions of the ASAE 48(5), pp. 1889–1892, 2006.
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