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1. Introduction

Rapid identification and classification of microbial
organisms are critical tasks in various areas such as
bio-surveillance, biosecurity, clinical studies, and
food safety. A series of recent foodborne disease

outbreaks once again demonstrates the need for
more reliable, accurate, and rapid analytical methods
for detection and monitoring of pathogenic microor-
ganisms such as Escherichia coli, Listeria monocyto-
genes, Salmonella enterica, and Staphylococcus spp.
[1]. Compared to conventional detection methods,
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We report a multispectral elastic-light-scatter instrument
that can simultaneously detect three-wavelength scatter
patterns and associated optical densities from individual
bacterial colonies, overcoming the limits of the single-wa-
velength predecessor. Absorption measurements on liq-
uid bacterial samples revealed that the spectroscopic in-
formation can indeed contribute to sample differentiabil-
ity. New optical components, including a pellicle beam
splitter and an optical cage system, were utilized for ro-
bust acquisition of multispectral images. Four different
genera and seven shiga toxin producing E. coli serovars
were analyzed; the acquired images showed differences in
scattering characteristics among the tested organisms. In
addition, colony-based spectral optical-density informa-
tion was also collected. The optical model, which was de-
veloped using diffraction theory, correctly predicted wa-
velength-related differences in scatter patterns, and was
matched with the experimental results. Scatter-pattern
classification was performed using pseudo-Zernike
(GPZ) polynomials/moments by combining the features
collected at all three wavelengths and selecting the best
features via a random-forest method. The data demon-

strate that the selected features provide better classifica-
tion rates than the same number of features from any sin-
gle wavelength.

Three wavelength-merged scatter pattern from E. coli.
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label-free optical diagnostics not only delivers results
in a fast, cost-effective, and less labor-intensive man-
ner, but also provides accurate and non-destructive
evaluation of the samples, allowing secondary confir-
mation with further verification. Owing to the wide
range of the spectral region that is available for opti-
cal diagnostics, spectral imaging has been widely uti-
lized in biomedical applications [2], and food quality
and safety control [3–6]. In the area of applications
related to food inspection, numerous applications of
hyperspectral imaging to classify the quality of har-
vested vegetables [7], fruits [8], meats [9], and poul-
try [10] have been reported.

The cited works employing spectral techniques
rely on standard far-field imaging. However, cells
and bacterial colonies are three-dimensional objects;
optical interrogation of their whole volume can pro-
vide better classification accuracy. A label-free, non-
destructive, automated detection technique called
BARDOT (BActerial Rapid Detection using Opti-
cal scattering Technology) based on elastic-light-
scatter (ELS) patterns of bacteria colonies was de-
veloped for rapid detection and classification of mi-
crobial organisms [11–13]. The applicability of the
technology were reported for different organisms
using a single-wavelength laser and a varying num-
ber of genera or species [14–23]. The merit of this
technology is that the interrogation photons interact
with the whole volume of a colony, thus collecting
better phenotypic characteristics than reflective im-
aging. One inherent limitation of the current BAR-
DOT instrument is that the classification perfor-
mance suffers either when large numbers of species
and strains are analyzed simultaneously or lower

taxonomy of bacterial colonies were classified. Re-
cently, we introduced scalar diffraction modeling of
multispectral forward-scattering patterns for bacter-
ial colonies [24] and verified the feasibility of the
multispectral approach on bacterial phenotyping.
Here we report a new design and validation of a
multispectral forward-scatter phenotyping instru-
ment called MS-BARDOT that combines multiple
diode lasers and an optical density (OD) unit with
the conventional BARDOT system. The benefit of
this design is that both the spectral forward-scatter-
ing patterns and the OD of a bacteria colony can be
measured. To maximize the classification efficiency,
both a random-forest (RF) method for proper fea-
ture selection and pseudo-Zernike (GPZ) polyno-
mials/moments are utilized for the multi-spectral in-
formation analysis. Four representative bacterial
genera were measured and analyzed with the pro-
posed instrument and algorithm.

2. Materials and methods

2.1 Design of MS-BARDOT

As shown in Figure 1, the MS-BARDOT system
consists of three major components: a multispectral
forward scatterometer, a sequence controller, and a
two-dimensional lateral stages. These components
were designed with three cage-type R45 : T55 pellicle
beam splitters (Thorlabs Inc., Newton, NJ, USA).
Two pellicle beam splitters were positioned above,
and the third one was positioned below the sample.

Figure 1 Schematic diagram of
multispectral BARDOT with spec-
tral OD measurement functional-
ity. (a) Overall design of the pro-
posed instrument. (b) Schematic
block diagram. (c) Light path for
forward-scattering mode, (d) Light
path for OD-monitoring mode.
Three different wavelength LDs
and two PDs were integrated into
the BARDOT system to simulta-
neously measure the spectral for-
ward-scattering pattern and the
OD of a bacterial colony on a semi-
solid medium.
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One-mW collimated beams from 405 nm, 635 nm,
and 904 nm aser diode modules (Coherent Inc., San-
ta Clara, CA, Lasermate Group Inc., Walnut, CA,
USA) were selected as light sources. Each module is
attached to the port of the beam-splitter cage unit as
shown in Figure 1(a). The selection of individual wa-
velengths was based on the spectral absorption of
four different bacterial genera and the spectral avail-
ability of a commercial diode laser (Section 3.1).
With a stacked beam-splitter structure, each multi-
spectral forward-scattering pattern and OD from a
single colony can be captured simultaneously. Con-
sequently, all the multispectral forward-scattering
patterns and ODs can be captured in less than 5 sec-
onds per colony. For pattern capture, a monochro-
matic CMOS camera (PL-B741, Pixelink, Ottawa,
ON, Canada) with 1280(H) × 1024(V) pixels and
6.7 μm pixel size was positioned under the Petri dish
at a distance of 39 mm, measured from the bottom
surface of the dish to the surface of the image sensor.

For OD measurement, a pellicle beam splitter
was positioned between the Petri dish and the
CMOS camera (Figure 1). Two Si photodiodes
(PDs) (Thorlabs Inc.) with active wavelength from
400 nm to 900 nm were mounted at each port of the
pellicle beam-splitter cages. The PD attached to the
middle beam-splitter cage (PD #1, in Figure 1(c))
monitored the intensity of incident light, while the
PD integrated with the bottom beam-splitter cage
(PD #2, in Figure 1(c)) measured transmitted light
from a sample. Using the light-intensity information,
the OD of the sample was computed for each wave-
length. Figure 1(c, d) depicts beam paths from each

light source to the sensor for forward-scatter and
OD measurement mode respectively.

2.2 Spectral intensity calibration

Since the pellicle beam splitters, PDs, and CMOS
sensors have inherent optical response characteris-
tics, the light intensity and sensor sensitivity were ca-
librated optically and electrically to maintain similar
input intensities for each wavelength. As shown in
Figure 2(a), the experimental reflectance and trans-
mittance ratios for the R45:T55 pellicle beam splitter
were R56.8 : T43.1, R44.3 : T55.7, and R40.9 : T59.0
for 405 nm, 635 nm, and 904 nm, respectively. For
the detailed calibration routine, see Figure S1. Con-
sidering the quantum efficiency of each sensor and
the attenuation ratio of the beam-splitter unit, a
spectral intensity-compensation factor for each sen-
sor was computed and applied to the system, as
shown in Figure 2(b) (see supplementary section
and Figure S2 for gain calibration of the actual scat-
ter patterns).

2.3 Spectral OD measurement

E. coli O157 :H7 EDL933, L. monocytogenes F4244,
S. Enteritidis PT21 and S. aureus ATCC 25923 were
selected as model organisms. For the agar plate pre-
paration, all cultures were grown in 5 ml brain heart

Figure 2 Wavelength-resolved
light-intensity calibration and com-
pensation. (a) Experimental result
of reflectance and transmittance ra-
tios for pellicle beam splitter for
each wavelength. (b) Wavelength-
resolved overall attenuation ratio
by the integrated beam-splitter unit
for each sensor and compensation
result. Spectroscopic absorption re-
sults for four representative bacter-
ial samples on liquid BHI stock. (c)
ODs of interrogated genera from
300–800 nm. (d) Relative ODs of
interrogated genera to that of L.
mono, which had the lowest OD
among the genera at a given wave-
length. Solid lines represent the
available laser lines as a module.
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infusion (BHI, BD Diagnostics, Sparks, MD, USA)
broth for 15 h at 37 °C and 130 rpm on an incubator
shaker. The cultures were then serially diluted and
surface plated on BHI agar plates (100 mm × 15 mm)
to achieve bacterial counts of 50–100 CFU/plate. The
plates were incubated at 37 °C until the colonies
reached a diameter of 900–1100 μm. The colony diam-
eters were measured using both a bright-field micro-
scope equipped with a Leica DFC310 FX CCD cam-
era, and Leica Application Suite V4.20 build 607 (all
from Leica Microsystems, Bannockburn, IL, USA)
using a 10× objective, and a BARDOT instrument.
Colonies of E. coli, Listeria, Salmonella, and S. aureus
were grown for 10.5 h, 22.5 h, 11.5 h, and 13.5 h, re-
spectively, to obtain diameters of 1000 μm. The thick-
ness of the agar for each plate was maintained at ap-
proximately 8 mm.

For the liquid-sample preparation, a pure colony
of each genus was harvested and diluted in a single
tube, and incubated for 12 h at 37 °C. Then, sample
aliquots were transferred to disposable cuvettes, and
each stock was serially diluted 3 times at a 1 : 10 ra-
tio. ODs of the diluted samples were measured at
300–800 nm with a DU 800 spectrophotometer
(Beckman Coulter Inc., Brea, CA, USA). Spectral
absorption curves were recorded for 3 different re-
plicates with 5 samples (a total of 15 data sets) for
each bacterium, and average spectral response
curves were calculated. For quantitative comparison,
the area under the curve was calculated and used for
normalization.

For the solid-sample experiments, 5 plates per or-
ganism were prepared for a single-day data set, and
repeated on three different days in order to accom-
modate the biological variability. At least 20 random
locations of bare BHI and 20 colonies were interro-
gated per plate. The mean value of the 20 data
points was considered as the representative transmit-
tance, and the results were computed as spectral
OD. The spectral OD of BHI is defined as

ODagarðλÞ ¼ �log10
IðλÞagar
IðλÞinput

 !

ð1Þ

The mean value of each agar OD was computed
as 0.503 nm, 0.129 nm, 0.072 nm for 405 nm, 635 nm,
and 904 nm, respectively. Since it is challenging to
measure the actual OD of a bacterial colony without
destroying the colony structure on semi-solid agar,
we used an indirect method to obtain the colony
ODs by subtracting the OD of the pure agar from
that of colony and agar (see Figure S2(c)):

ODcolonyðλÞ ¼ �log10
IðλÞagarþ colony

IðλÞinput

 !

�ODagarðλÞ

ð2Þ

For the serovar level classification, seven serovars
of shiga toxin producing E. coli (E. coli O26, O45,
O103, O111, O121, O145, and O157) with three stains
per serovars were measured. The cultures were grown
in BHI broth for 14 h at 37 °C in incubator shaker
with 130 rpm. After the incubating, the cultures are
serially diluted and surface plated on both BHI and
SMAC agar plate (100 mm × 15 mm) to achieve a
bacterial counts of 50–100 CFU/plate. The plates are
incubated at 37 °C until the size of the colonies
reached to diameter range of 700 � 1100 μm. The dia-
meters of the bacterial colonies are measured using a
bright-field microscope (Leica Microsystems, Ban-
nockburn, Illinois, USA) equipped with Spot software
(Sterling Height, MI) using a 10× objective, and
BARDOT. 10.5–11 h are taken for 1000 μm colony
diameter on both of the nutrient agar plates. Utilizing
the multispectral BARDOT, multispectral forward
scattering patterns of the 50–60 colonies are meas-
ures for the each strain as a day duplication. Three
different date duplications are collected for the ex-
periment.

2.4 Modeling of spectral scattering

From our previous report [24], the multispectral for-
ward-scattering pattern of a bacterial colony is mod-
eled as

Eiðxi; yi; λÞ ¼ C
ÐÐ

Tðxa; ya; λÞ exp ½iΦoverallðxa; ya; λÞ�
� exp ½�2π iðfxðλÞ xa þ fyðλÞ yaÞ� dxa dya

ð3Þ

This model includes two major components: an
amplitude modulator, T(xi, yi, λ), and a phase modu-
lator, Φoverall, which consists of Φc, Φq, and Φr, de-
fined as colony, quadratic, and Gaussian phase com-
ponent, respectively. The maximum diffraction angle
and the number of rings are also important param-
eters and are defined as

θðλÞ=2max ¼
1

k

d ΔΦoverallðλÞ
dr

� �

max

ð4Þ

NringðλÞ ¼
ΔΦoverallðλÞmax

2π
ð5Þ

2.5 Spectral data analysis

The feature extraction/recognition of scatter patterns
was performed using pseudo-Zernike (GPZ) polyno-
mials/moments as described previously for a mono-
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chromatic version of the method [12, 25]. The GPZ
polynomials are formally defined as

kαpλðzÞ ¼ z
pþλ

2 ðz�Þ
p�λ

2
ðαþ 1Þp�jλj
ðp� jλjÞ ! 2

�F1 �pþ jλj;�p� jλj � 1; αþ 1; 1� 1

ðzz�Þ1=2

 !

ð6Þ

where * denotes the complex conjugate and z = r ejθ.
The parameter α is user-tunable and scales the poly-
nomial values. The repetition λ is set between 0 and
p.

The polynomial is defined in polar coordinates as

kαpλðr; θÞ ¼ kαpλðr ejθÞ ¼ Rθ

pλðrÞ ejλθ

where the real-value radial polynomial Rα

pλðrÞ is giv-
en by

Rα

pλðrÞ ¼
ðpþ jλj þ 1Þ!
ðαþ 1Þpþjλjþ1

P

p�jλj

s¼0

�
ð�1Þsðαþ 1Þ2pþ1�s

s!ðp� jλj � sÞ !ðpþ jλj þ 1� sÞ !
rp�s

ð7Þ

The radial polynomial Rα

pλðrÞ is computed using
the recurrence relation

Rα

pλðrÞ ¼ ðM1r þM2Þ Rα

p�1;λðrÞ þM3R
α

p�2;λðrÞ ; ð8Þ

with the following:

M1 ¼
ð2pþ 1þ αÞ ð2pþ αÞ
ðpþ λþ 1þ αÞ ðp� λÞ

M2 ¼
ðpþ λþ 1Þ ðαþ 2pÞ

pþ λþ αþ 1
þM1

ðpþ λÞ ðp� λ� 1Þ
2p� 1þ α

M3 ¼
ðpþ λÞ ðpþ λþ 1Þ ð2p� 2þ αÞ ð2p� 1þ αÞ

2ðpþ λþ αþ 1Þ ðpþ λþ αÞ

þM2
ðpþ λÞ ð2p� 2þ αÞ

pþ λþ α

�M1
ðpþ λÞ ðpþ λ� 1Þ ðp� λ� 2Þ

2ðpþ λþ αÞ

and

Rα

λλ
ðrÞ ¼ rλ

Rα

λþ1;λðrÞ ¼ ½ðαþ 3þ 2λÞ r � 2ðλþ 1Þ� Rα

λλ
ðrÞ

3. Experiments and results

3.1 Spectral absorption from liquid samples

Figure 2(c) shows spectral-absorption measurements
of the four genera in liquid BHI stock. All the gen-
era showed peak OD values near 400 nm, and ODs
gradually decreased as the wavelength increased. S.
aureus had the highest OD value and L. mono had
the lowest among the tested genera. Figure 2(d)
shows the relative OD values of the interrogated
bacteria with respect to L. mono. The vertical
dashed lines represent the commercially available
wavelengths of the laser diode (LD). The 405 nm,
635 nm, and 904 nm laser lines were selected on the
basis of line separation that maximized OD differ-
ences among the interrogated bacteria. This result
confirms the observation of other researchers postu-
lating that the OD information can be used as a sim-
ple classification method for bacteria at the genus le-
vel [26].

3.2 Spectral OD of bacteria colonies on
semi-solid BHI agar

Figure 3(a) shows the measurement points. The
spectral absorption from pure agar areas displayed
characteristics similar to those of the liquid samples
(Figure 3(b)). At longer wavelengths, the OD of the
BHI agar decreased. Meanwhile, the net OD from
bacterial colonies showed less reduction as the wave-
length increased. Furthermore, for S. aureus the net
OD for 635 nm showed a peak value of 0.38, while
that of S. Enteritidis was 0.22 (Figure 3(c)). The
ODs at 904 nm showed the minimum ODs for all
genera. In contrast to the liquid-sample result where
L. mono showed the lowest OD, S. Enteritidis pro-
duced the lowest ODs at 635 nm and 904 nm by
Eqs. (1), (2). Although single-wavelength OD values
provide limited differentiability among genera, ODs
determined at three wavelengths can be utilized as
the first-step classification method.

To better estimate the difference, spectral OD
differences were calculated (Figure 3(d)). The X-axis
displays three combinations of OD difference
(#1 = OD405 – OD635, #2 = OD405 – OD904, and
#3 = OD635 – OD904). Using this method, difference
among the genera was visually enhanced, and it was
easier to recognize their spectral OD variations. For
instance, S. aureus had negative OD difference at
#1, while the other genera showed 0 to 0.07 OD dif-
ference, which means that each genus had similar
ODs for 405 nm and 635 nm. For #2, OD differences
between 405 nm and 904 nm, L. mono had the high-
est while S. aureus had the smallest OD difference,
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which represented similar OD values for the incom-
ing wavelength. E. coli and S. Enteritidis had similar
OD difference trends at both #2 and #3 combina-
tions.

3.3 Theoretical spectral forward-scatter
model

Figure 4(a) shows the results of the multispectral
forward-scattering pattern based on the spectral
ESL model. S. aureus was selected as a target micro-
organism since it has a smooth convex colony shape
and generates a forward-scatter pattern of concentric
circles [24, 26]. For the prediction, the colony diam-
eter was set as 1000 μm and the aspect ratio (colony
center height-to-diameter ratio) was set to 1 : 6.25.
Since both the amplitude and phase terms are func-
tion of the wavelength (Eq. (3)), the result is shown
as a complexed form of the component by the wa-
velength differences. As the predicted model shows,
the pattern size and the number of rings decrease
while ring width and gap increase with a longer wa-
velength of incident light (see supplemental section
and Figure S3). Figure 4(b) shows the edge region
of the multispectral experimental measurement re-
sult from an S. aureus colony, while Figure 4(c)
shows the counterpart from the model. The results
show a similar trend of order of spectral peak loca-
tions; 405 nm is located at the outermost rim region,
and 904 nm shows the smallest diffraction angle
among the three wavelengths.

3.4 Experimental spectral forward-scatter
patterns

Figure 4(d) shows the snapshot of spectral forward-
scattering patterns for the four bacterial genera on
semi-solid BHI agar measured with MS-BARDOT
(also see supplemental Figure S4). Visual inspection
of the spectral scatter patterns suggested differences
in the characteristics. For E. coli and S. Enteritidis
samples, the 405 nm patterns show fine structures of
spokes, speckles, and rings unlike the patterns col-
lected at the other wavelengths. For L. mono sam-
ples, the 405 nm pattern has the largest diameter,
and the central portion of the pattern indicates high-
er signal intensity compared with patterns at 635 nm
and 904 nm. These can be further confirmed with
the patterns transformed and plotted in polar repre-
sentation. Figure S5 shows the transformed patterns
of Figure 4(d) (spectral forward-scattering patterns
of each species; 405 nm, 635 nm, and 904 nm for top,
middle, and bottom, respectively) in rectangular co-
ordinates, where X and Y axes represent angle and
radius, respectively. S. aureus patterns transformed
into polar representation (Figure S5(d)) reveal a
clear ripple structure in 635 nm and 904 nm patterns,
while those at 405 nm show low intensity outside the
central bright spots.

3.5 Multispectral image analysis

The spectral scatter patterns were analyzed as de-
scribed before using GPZ moments as features.

Figure 3 Wavelength-resolved OD
of bacteria colony on semi-solid BHI
agar. (a) Schematic of the measure-
ment points for each case. (b) OD
(BHI agar + colony) = –log 10((BHI
agar + colony)/Input intensity), (c)
OD (colony) = OD (BHI agar + col-
ony) – OD (BHI agar), (d) Relative
OD: #1, #2, and #3 stand for OD
difference between 405 nm and
635 nm, 405 nm and 904 nm, and
635 nm and 904 nm.
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Since three separate laser wavelengths were used,
the number of extracted features per colony was
three times larger than in the standard setup de-
scribed previously. This brings a serious challenge,
since the increase in the feature space leads to a
much higher complexity of classifiers. Although it
may be argued that increasing the number of fea-
tures should lead to better (i.e., more accurate) clas-
sification, it is known that a naïve increase in the di-
mensionality may also lead to overtraining and result
in lower classification accuracy in practical imple-
mentations. To deal with this issue and maximize the
classification efficiency, we employed feature selec-

tion based on a random-forest (RF) algorithm. Es-
sentially, in every run the RF selects a random fea-
ture subset and generates a classification tree. The
importance of the analyzed features is determined
by the accuracy of these trees.

We conducted our further analysis using 15 fea-
ture selections. After determining the subset of best
features in single wavelength and mixed wavelength
settings we performed the final classification using
standard SVM implementation with a linear kernel.
The performance of the classifiers was determined
by 10 × 2 cross-validation, i.e. the 2-fold cross-valida-
tion procedure was repeated 10 times with different

Figure 4 Theoretical simulation of
the multispectral forward-scatter-
ing patterns. (a) The predicted
scatter patterns from three wave-
lengths. (b) and (c) The 1-D cross-
section of the intensity across the
radial direction near the boundary
area for experimental and simula-
tion results, respectively. (d) Snap-
shot of the multispectral forward-
scattering patterns for four differ-
ent organisms: top: 405 nm, middle:
635 nm, bottom: 904 nm. Quali-
tative differences are observed
among the wavelengths; 405 nm
produces refined scatter patterns.
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seeds for the random-number generator. The final
results are reported in the confusion matrices (as
percentages) with accompanying standard devia-
tions, for 405 nm (A), 635 nm (B), 904 nm (C), and
a mix of features from all colors (D) at Figure 6. For
the purpose of visualization, we employed linear dis-
criminant analysis plots, which revealed the structure

of the data point clouds and 3-D and illustrated the
difference between classifiers built using different
feature sets (Figure S6). The improvement in classi-
fication sensitivity (true positive rates tall and t405,
t635, t904) due to the use of multiple wavelength was
expressed as Cohen’s h, where

h ¼ 2ðarcsin ð
ffiffiffiffiffiffi

tall
p

Þ � arcsin ð
ffiffiffiffiffiffiffiffi

twav
p

ÞÞ ð9Þ

The results are shown in Figure 5, and demon-
strate that E. coli classification benefits most from
the use of multiple lasers, whereas S. aureus classifi-
cation becomes actually less sensitive in the multi-
wavelength settings. This is because the 635 nm wa-
velength produces the ideal feature set for the classi-
fication of this microorganisms, and every other wa-
velength is worse. However, on average (i.e. taking
all the bacteria genus under consideration), the set-
up employing multiple wavelengths is always better
than a single wavelength arrangement. Even though
absolute improvement levels are only small (in terms
of Cohen’s h values) for the genera level of classifi-
cation, we hypothesize that this technique will pro-
vide a higher degree of improvements when operat-
ing in a more challenging setting, for instance classi-
fying lower taxonomies samples such as E. coli sero-
vars.

To test this hypothesis, MS-BARDOT was chal-
lenged with seven E. coli serovars (E. coli O103,
O111, O121, O145, O157, O26, and O45). Figure 7
displays the comparison of four cases (mixed,
405 nm, 635 nm, and 904 nm) for all seven serovars.
The results indicates an overall better performance

Figure 5 Improvement is classification sensitivity due to
the use of multiple laser wavelengths (vs. single wave-
length) expressed as Cohen’s h effect size. The results
shows that detection of E.coli benefits mostly from the use
of multiple wavelength. On the other hand the detection of
S. aureus is not improved. On average, the multiple wave-
length set-up demonstrate an improvement over every sin-
gle laser line.

Figure 6 Confusion matrices with
accompanying standard deviations
for each wavelength, (a) 405 nm,
(b) 635 nm, (c) 904 nm, and (d) a
mix of features from all wave-
length.
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for the mixed wavelength classifier for all seven sero-
vars tested. Based on the positive predictive values,
405 nm classifier shows the lowest average PPV
while the 904 nm shows the highest among the single
wavelength classifier. However, the mixed wave-
length classifier outperforms on all cases except for
the O157 where their absolute PPV values were 0.98
and 1 for mixed and 904 nm respectively. In particu-
lar, single wavelength classifier results in 0.65–
0.77 PPV values for O111 and O121 while the mixed
classifier improves this value to 0.9 and 0.84 respec-
tively.

4. Discussion

Notable improvement over the single-wavelength
BARDOT was possible owing to the optical design of
the multispectral structure. The overall dimension of
the module that could replace the single laser source
of the current system is 95 mm × 52 mm × 140 mm.
The calibration of each wavelength was performed
one time to accommodate different reflectance/trans-
mission ratios from the pellicle beam splitters and
spectral quantum efficiency from the CMOS camera.
To deal with this issue, we measured the incoming
spectral intensity and compensated each wavelength
such that approximately the same intensity is per-
ceived by the CMOS camera (Figure 2(a, b)).

Figures 2(c, d) and 3 compare the spectroscopic
OD measurements for liquid and solid samples.
Using the liquid sample is the standard practice for
growth-curve estimation by microbiologists, but we

utilized this information for the selection of the best
discriminative wavelength region. For example, at
400 nm the OD of S. aureus is almost 1/3 higher than
that of L. mono. Using spectroscopic absorption
alone for classifying different bacterial samples has
been reported [27]; for the four tested genera at
least, the selected wavelengths of 405 nm, 635 nm,
and 904 nm provide good separation by their spec-
tral absorption. The ODs for solid samples provided
interesting results. Compared to liquid samples, all
genera except S. aureus showed a monotonically de-
creasing OD trend as the wavelength increased. By
nature, liquid samples are more homogeneously
spread out through the whole volume, so only the
individual cell shape or other particulates can be ar-
gued as contributing factors for the differences ob-
served. However, in solid samples, the growing mi-
crobial film (bacterial colony) itself contains more
characteristic information other than the individual
cell shape. For example, E. coli, Listeria, and Bacil-
lus cells are all rod-shaped, but their colony charac-
teristic show dramatic differences [28]. In addition,
nutrition, agar hardness, and environmental factors
have been reported to change the morphology of
the solid colony. Therefore, given an automatic in-
strument that can capture the multimodal character-
istics of a colony, a solid sample would have better
opportunity to provide differentiable traits from a
bacterial sample.

Figure 4(d) and Figure S5 display a snapshot of
the multispectral forward-scatter patterns from three
wavelengths and four genera, plotted in polar coor-
dinates. Different bacteria have different prominent
patterns. For example, some samples showed very
fine structured spokes (E. coli) and speckles (S. En-
teritidis) at the edge of the rims, while L. mono
showed a difference in the center spot area. Our bio-
physical model establishes that a bacterial colony
has two major regions; the edge regions, where cell
division occurs, are generally less dense and have
greater water content than the center part [11, 29].
Therefore, this pattern information can provide
some understanding of how bacteria are spreading
at the edge and how cells are accumulating in the
center. One organism that uniquely stand out is S.
aureus. Since the 405 nm patterns show weak rings
at the edge, there is less detail information that can
be extracted.

It has previously been reported that systems
based on monochromatic elastic light scatter pro-
duce features that lead to high classification accura-
cies, comparable with well-established biochemical
or immuno-based methods [12]. However, owing to
the danger posed by many of the pathogens classi-
fied, it is imperative that the classification proce-
dures provide the highest possible level of accuracy.
Therefore, the only relevant benchmark for the sys-
tems tested is absolutely perfect sensitivity and spe-

Figure 7 Comparison of the positive predictive value
(PPV) of the seven E. coli serovars. Four bar graph repre-
sents the PPV for mixed wavelength and three single wave-
lengths (405 nm, 635 nm, and 904 nm). The result clearly in-
dicates that optimal mixture of the features from different
wavelengths provides overall higher performance for the
single wavelength version.
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cificity. Consequently, we consider robust increases
in classification success in the range of 1–2% to be
very important in the practical setting. We examined
an implementation of a feature-selection strategy
that allows us to maximize the potential of a multi-
spectral system without the disadvantage of over-
whelming the classification system with an increased
number of features. We also demonstrated that care-
ful selection of features may lead to increase in al-
ready impressive classification accuracies. Adopting
a random-forest algorithm for feature selection, we
verified that a range of 10–20 features was the opti-
mal for the application, and used 15 features for the
analysis to maximize the classification ratio. As Fig-
ure 5 shows, the optimized selection of features from
all-wavelength case always provide better results
comparing to the single wavelength arrangement.
Figure 6 shows the cross-validation matrices for sin-
gle and multi-wavelength cases where, on average,
selection of the best features from multi-wavelength
provides the highest classification rate.

In general, hierarchical taxonomy decides the dif-
ferentiating power among the species of the bacterial
sample. Except for mutation of certain genes that
dramatically changes the growth morphology, mov-
ing down to lower hierarchical level of the taxonomy
generally shares more common morphological traits.
Since serovars are the subspecies class that only dif-
fers in surface antigen, their bacterial colony mor-
phology and respective scatter patterns displays simi-
lar characteristics. Figure 7 result clearly delivers the
merit of the multispectral approach of the bacterial
colony classification where optimal selection of fea-
tures from each wavelength component ensures the
overall improvement in classification rates compared
to single wavelength version.

5. Conclusion

We propose a bacterial phenotyping technique
based on multispectral forward-scattering patterns
and ODs. The system provides simultaneous meas-
urement of forward-scattering patterns and ODs
from a target bacterial colony at three different wa-
velengths (405 nm, 635 nm, and 904 nm). Utilizing a
stackable pellicle beam-splitter structure, the system
minimizes stray light and the ghost effect and can be
further expanded to include additional wavelengths.
Pseudo-Zernike (GPZ) polynomials/moments are
used for analysis and classification. The performance
of the proposed technique was verified using four
different bacterial genera. Compared to the previous
single-wavelength instrument, a multispectral system
can provide enhanced performance with the same
optimal number of features. The resulting enhance-
ment of accuracy is critical in biosafety- and biosur-
velliance-related fields.
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