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ABSTRACT  

Arcobacter (formerly classified as Campylobacter spp.) are curved-to helical, Gram-negative, aerobic/microaerobic 
bacteria increasingly recognized as human and animal pathogens. In collaboration with Lincoln and Purdue University, 
we report the first experimental result of laser-based classification method of bacterial colonies of these species. This 
technology is based on elastic light scatter (ELS) phenomena where incident laser interacts with the whole volume of the 
colony and generates a unique fingerprint laser pattern. Here we report a novel development and application of deep 
learning algorithm to classify the scatter patterns of Arcobacter species using variational autoencoders (VAE). VAE 
creates set of normal distributions. Each of these distributions are responsible for certain properties of the original 
images. We used VAE to identify features in the features space for several hundred images which includes size of the 
colony based on scatter size, intensity of the image, and, the number of rings within the image, and so on. Thus each 
sample within our image database can be coded with sets of features that facilitates fast preliminary search for similar 
images allowing clustering of similar patterns in feature space. In addition, such initial selection could assist in 
identifying non-bacterial scatter patterns (i.e. bubbles or dust spots in the agar), or doublets where two colonies are 
overlapping during the acquisition time thus removing non-biological artifacts prior to analysis.  An interesting result 
was that while VAE created far more realistic synthetic images closer to the original image, a simple autonencoder 
resulted in better cluster separation.   
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1. INTRODUCTION  
We have previously presented a rapid technology for obtaining preliminary results for identification of bacterial colonies 
on agar plates based on light-scatter patterns[1]These studies focused on the importance of rapid prescreening methods 
when it comes to food poisoning or bioterrorism prevention. However, a difficulty with this approach is the stage of 
classification of the obtained images based on Zernike moments as a feature extracting technique.  This allowed us to 
approach correct classification of around 84%. Further progress in this technology was described by Dundar, Kou, 
Zhang, He, and Rajwa [2]. Different classification models were applied to compare their accuracy. Surprisingly, K-
Means-based representation demonstrated nearly perfect classification accuracy – 97.89% on the dataset of four bacteria 
classes. As a follow-up study, we proposed application of deep-learning models with large-scale datasets to see if the 
performance can be maintained or improved when challenged with increased sample variety. However, all these learning 
techniques are suitable only for end-to-end classification with training in a supervised manner. From a practical point of 
view, this technology is not capable of identifying novel strains of bacteria due to the nature of current supervised 
classification models [3].  One of our goals is to construct a statistical learning model for automated analysis and 
labeling of biological datasets using an pre-trained, unsupervised feature and manifold learning paired with subsequent 
clustering in order to determine the likely number of biologically meaningful classes. The resultant model should be able 
to discover relevant features and use the learned dimensionality reduction to identify emerging classes in the data, and in 
consequence, detect defective or anomalous samples without supervised training or class number knowledge. It can 
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serve as a tool for preliminary analysis of provided samples to identify possible novelty and prevent further 
misclassification by currently utilized methods. 

 

Figure 1. Conventional method for classification of scatter patterns from bacterial colonies is shown. This method is a 
supervised training since verified training set is required. Feature extraction by Zernike polynomials followed by support 
vector machine (SVM) based training is used for classification. Data sets are then processed in a similar manner with the 
SVM creating identified clusters providing organism identification. 

An area recently defined has been termed “deep learning”, an approach that is described as a solution to "allow 
computers to learn from experience and understand the world in terms of a hierarchy of concepts, with each concept 
defined through its relation to simpler concepts"[4]. According to these authors, the term "deep" comes from the idea of 
graphs representing this structure which has many layers. This is a kind of machine learning, which in turn is a common 
type of Artificial Intelligence (AI). A deep learning approach is intended to tackle intuitive tasks from everyday life. The 
difficulty of tasks such as speech or object recognition is that they cannot be formulated as a set of rigorous abstract 
rules. These problems are usually translated to the computer field through representation learning. The latter  approach is 
designed to convert raw data, such as images or voice, into a set of descriptive features which are represented as 
multidimensional vectors [4].  

Recently a group from China proposed a method for application of Deep Convolutional Neural Networks (Deep CNN) 
to classification and segmentation of histopathology images [5]. To overcome the issue of scarce datasets, researchers 
adopted deep CNN model provided by Cognitive-Vision team described in one of the ImageNet contest-related 
publications [6]. The model was trained using publically available labeled dataset ImageNet. Despite the fact the model 
was trained for natural images, scientists were able to apply it to biological imaging.  

Similarly, we proposed to enhance our automated analysis by using variational autoencoders (VAE). VAE constrain an 
encoding network and we tested this to analyze a series of elastic scatter patterns from colonies of pathogenic organisms. 
VAE creates set of normal distributions and each of these distributions is subsequentially responsible for certain 
properties of the original images. We used VAE to identify features in the features space for several hundred images. For 
example one function would be of size of the colony based on scatter size, another one could be intensity of the image. 
Another could be the number of rings within the image, and so on. Thus each sample within our image database can be 
coded with set of features that facilitate fast preliminary search for similar images. In addition, such initial selection 
could assist in identifying bad samples (i.e. bubbles or dust spots in the agar, doublets where two colonies are 
overlapping, etc.) during the acquisition time thus removing non-biological artifacts prior to analysis.  An interesting 
result was that while VAE created far more realistic synthetic images closer to the original image, a simple autonencoder 
resulted in better cluster separation. We applied this novel approach to scatter patterns generated from Arcobacter 
species, a group that has been associated with various human and animal diseases [7]. 
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Figure 2. Two applications of convolutional |AE. First application is called the feature learning where unlabeled data is 
presented to AE and the algorithm automatically find and ‘learns’ the best feature to the set of input images. This 
provides insights to the compositional difference of scatter patterns and can reconstruct the representative images of a 
species from the learning process. A second application is to utilize the extracted features to provide clustering analysis 
of unlabeled sample images. Clustering unlabeled images has many applications including process monitoring and 
quality control of microbial based products. 

2. MATERIAL AND METHODS  

2.1 Biological sample preparation 

Arcobacter samples were shipped using transport swabs and initially cultured on BHI + 5%SB (sheep blood) (Hemostat 
Laboratories, defibrinated sheep blood) at 30 C. Arcobacter species were subsequently cultured on Brain Heart Infusion 
Agar (Difco ref#241830) with additional agar to bring the percent agar to 2% and the aseptic addition of filter sterilized 
ferrous sulfate (Sigma, #F8633) in water for a final of 2.78 g ferrous sulfate/L immediately prior to pouring plates. Strict 
control of agar volume is critical since the optical characteristics of the scatter detectors are calibrated for the depth of 
agar determined by this method.  
 
Once plates were tested for sterility, preparation of plates proceeded by depositing 50 microliters of sample dilution onto 
the center of the plate with distribution using a sterile spreading stick.  For those species requiring additional salt, 2% 
NaCl was added (to blood agar, or BHI agar). For this study, six of representative Arcobacter species were selected for 
analysis (A. butzleri, A. nitrofigilis, A. aquimarinus, A. defluvii, A. faecis, and A. lanthieri). Scatter images were 
collected using an automated incubator, a Cytomat 2C (Thermo) at 30 °C and connected to an elastic light scatter (ELS) 
system.  Images were collected every 90 min between hours 12 to 48 of culture and every 4 hours thereafter.   
 
2.2 Image acquisition 

The ELS instrument consisted of a laser source, plate imaging camera, sample handler and scatter camera as described 
previously[1,8,9]. Using the plate imaging camera, the instrument automatically collects a map of the colony locations 
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based on user defined criteria of colony diameter and circularity. Based on the spatial locations of the colonies, the 
system implements a traveling salesman-based pathway algorithm to optimize collection time. Data are saved onto the 
organism database which checks for previously classified organisms. Typically, if the database finds a match the 
organism is identified, if not, this colony is plated onto a fresh plate to produce at least 50 colonies and is also sent for 
sequencing and biochemical analysis to determine its identity. Once that identity is made, the database classification can 
be corrected or updated. This size parameter can be preset and changed between 300 and 1200 microns for the specific 
laser installed in the instrument. For subsequent data processing, a specialized program called BacLan (see Figure 3 for 
screenshot) is used which interrogates the database and creates classifications, finds specific colonies, or specific 
organisms, experiments or plates and produced a variety of analytical outputs as necessary.  

 
Figure 3. Screenshot of the scatter pattern analysis software (Baclan) developed by Purdue University. This software 
suite can perform both conventional supervised classification (Zernike-SVM) and unsupervised classification (clustering 
with K-means and AE). (A) is the plate image of the bacterial colonies. The current example shows color coded 
clustering result after AE is applied. (B) shows the statistical parameters of each colonies. (C) Thumbnail image of the 
selected colony. (D) panel for both supervised and unsupervised parameters can be selected here. (E) Screen displaying 
the feature variations. Here AE features were displayed. (F) Thumbnail images (only some shown) of all of the scatter 
patterns from one plate. 

2.3 Classification method 

Conventional image classification method can be grouped as supervised and unsupervised learning method. Supervised 
learning requires image samples where their labels are pre-checked by different methods. This ensures the algorithm to 
use these proven labels is used for the input classes and drives the cost function to maximize the separation distance 
among the classes. Our previous reports regarding light scattering image classification have relied on this method [10, 
11]. All of the training library images were captured from bacterial species where their identity had been confirmed. The 
additional image classification does not require a known label in an unsupervised analysis. Whatever characteristics the 
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images display, an unsupervised method will identify the best separation of the overall images and provide the best 
estimation of the number of unique groups within the image database. This method is described in Figure 1.  
Autoencoders are a type of neural network which translates an input data into a feature vector and then tries to restore an 
original data with minimal loss [12]. Due to its nature, the autoencoder is trained in an unsupervised manner: the labeled 
data is not required, since the loss function express how fine restored data matches the original one (Figure 2). 

Utilization of the unsupervised classification has many applications. Here we present two of the many applications of 
convolutional AE. The first application is called feature learning where unlabeled data are presented to AE and the 
algorithm automatically finds and ‘learns’ the best features to the set of input images. This provides insights to the 
compositional difference of scatter patterns and can reconstruct the representative images of a species from the learning 
process. The second application is to utilize the extracted features to provide clustering analysis of unlabeled sample 
images. Clustering unlabeled images has many applications including process monitoring and quality control of 
microbial based products. 

 
Figure 4. Represents the features extracted from images using Zernike (left) and AE (Right). In the present study we 
utilized 256 features for Zernike and 64 for VAE. The insert shows the Baclan software analysis that identifies the 
analysis used in the present study 
 

2.4 Image analysis software 

ELS based bacterial scatter pattern analysis software called Baclan version 11.36 was used for this study. This program 
has a built-in supervised and unsupervised classification module. When using a supervised learning method, any 
combination of feature extraction method (Zernike, pseudo Zernike, Fourier transform, and Haralick) can be used to 
retrieve hundreds of interesting features from single ELS image. Following feature extraction, a support vector machine 
(SVM) algorithm is implemented for classification of input images for purpose of creating training sets. Performance of 
the trained classifier is reported in terms of a cross-validation matrix. For testing of new samples, scanned ELS images 
were challenged against the pre-trained database and classification accuracy then reported. For unsupervised methods, 
K-means, and hierarchical clustering algorithm is already implemented. In this study, the proposed VAE is additionally 
implemented using a deep neutral network and the general approach is shown in the screenshot of Figure 3.  

3. RESULTS  
Using the Baclan software suite with six species of Arcobacter samples, the performance of the conventional Zernike 
method and proposed VAE method was compared. Figure 4 shows the screenshot from the Baclan software package 
when 256 features of Zernike (Figure 4(A)) was selected or 64 features of VAE (Figure 4(B)). Even from the same ELS 
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image, different features can be extracted with different magnitudes. For all six species of Arcobacter samples, three 
different feature extraction methods (Zernike, VAE(64), VAE(256)) were coupled with four different dimensionality 
reduction methods: Principle component analysis (PCA), t-distributed stochastic neighbor embedding (tSNE) [13], 
uniform manifold approximation and projection (uMAP) [14], and VAE’s native reduction method.  
 

 
Figure 5.  Table summarizing the comparison between different feature extraction and dimensionality reduction and 
transformation methods. For feature extraction, Zernike and VAE was used while dimensionality reduction, principle 
component analysis (PCA), tSNE (t-distributed stochastic neighbor embedding), UMAP (uniform manifold 
approximation and projection), and VAE’s native reduction method. Input data sets were the 6 different species of 
Arcobacter and each transformation is labeled with their performance by Kullback-Leibler (KL) divergence. 

To accurately provide the quality of clustering a separation characteristic after transformation, Kullback-Leibler (KL) 
divergence method was implemented for each combination. Figure 5 displays the visual comparison of the 12 cases. 

 Zernike order=30, 255 
features 

VAE latent dim = 64 VAE latent dim = 256 
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tSNE 

   
UMAP 

   
VAE 
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Based on the comparison of the KL divergence, in most cases, Zernike (256) features resulted in better classification 
than the particular AE used in this study (64 features). Zernike is very fast and the main advantage of this feature 
extraction is that it works best with images with rotational invariance (circular images). Meanwhile, in terms of 
computational speed, AE is fast, but not as fast as Zernike. However, AE is particularly useful in reconstruction of image 
structure for checking the quality or integrity of the original image to determine if it is the accurate representation of 
scatter patterns. This representative scatter pattern has an important role in dissecting the correlation between 
genotypic/phenotypic characteristics to the specific feature of the scatter patterns. 
 
Another perspective of the feature extraction and dimensionality reduction combination is that each pair provides 
different results. For example, Combining AE with tSNE provided excellent class separation while this combination 
requires intensive computation resources. Meanwhile, AE with uMAP maintains the similar separation while the result 
can be delivered in a short period of time. An additional advantage of AE is to allow faster searching of the data based 
because of the reduced features. Thus searching for matching feature space using an AE based approach is extremely fast 
even for a very large database 
 

4. CONCLUSION  
New insight into an unsupervised classification algorithm called VAE was introduced and the effectiveness of the 
approach was evaluated with  six species of Arcobacter samples. ELS image of these species provided a model dataset to 
assess the clustering efficiency of the conventional feature extraction method (Zernike) and the alternative VAE 
approach. 12 different combinations of the feature extraction and dimensionality reduction approaches produced a map 
of optimal analysis methods for best separation of ELS patterns among the tested Arcobacter species. Future work will 
include validating this unsupervised classification into the supervised learning method and evaluation of the 
effectiveness of the classification ratios. 
 

5. ACKNOWLEDGEMENT  
This material is based upon work supported by the U.S. Department of Agriculture, Agricultural Research Service, under 
Agreement No. 59-8072-6-001; and the Royal Society of New Zealand “Catalyst” Fund, grant no. 17-LIU-003-CSG. 
Any opinions, findings, conclusion, or recommendations expressed in this publication are those of the author(s) and do 
not necessarily reflect the view of the U.S. Department of Agriculture or Royal Society of New Zealand. 

REFERENCES 

 [1] B. Bayraktar, P. P. Banada, E. D. Hirleman et al., “Bacterial phenotype identification using Zernike moment 
invariants,” Proceedings of SPIE, 6080, 60800V (2006). 

[2] M. Dundar, Q. Kou, B. Zhang et al., "Simplicity of Kmeans Versus Deepness of Deep Learning: A Case of 
Unsupervised Feature Learning with Limited Data." 883-888. 

[3] C. Sommer, R. Hoefler, M. Samwer et al., “A deep learning and novelty detection framework for rapid 
phenotyping in high-content screening,” Molecular Biology of the Cell, 28(23), 3428-3436 (2017). 

[4] I. Goodfellow, Y. Bengio, and A. Courville, [Deep Learning] MIT Press, (2016). 
[5] Y. Xu, Z. Jia, Y. Ai et al., "Deep convolutional activation features for large scale brain tumor histopathology 

image classification and segmentation." 947–951. 
[6] O. Russakovsky, J. Deng, H. Su et al., “ImageNet Large Scale Visual Recognition Challenge,” International 

Journal of Computer Vision, 115(3), 211-252 (2015). 
[7] L. Collado, and M. J, Figueras. “Taxonomy, epidemiology, and clinical relevance of the genus Arcobacter.” 

Clin. Microbiol. Rev. 24(1), 174-92. (2011). 
[8] E. Bae, A. Aroonnual, A. K. Bhunia et al., “System automation for a bacterial colony detection and 

identification instrument via forward scattering,” Measurement Science and Technology, 20, 015802 (2009). 
[9] E. Bae, N. Bai, A. Aroonnual et al., “Modeling light propagation through bacterial colonies and its correlation 

with forward scattering patterns,” J.Biomed.Opt., 15(4), 045001 (2010). 

Proc. of SPIE Vol. 11016  1101608-7
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 16 May 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



[10] P. P. Banada, S. Guo, B. Bayraktar et al., “Optical forward-scattering for detection of Listeria monocytogenes 
and other Listeria species,” Biosens.Bioelectron., 22(8), 1664-1671 (2007). 

[11] B. Rajwa, B. Bayraktar, P. P. Banada et al., “Noninvasive forward-scattering system for rapid detection, 
characterization, and identification of Listeria colonies: image-processing and data analysis,” Proceedings of 
SPIE, 6381, 638105 (2006). 

[12] Y. Bengio, “Learning Deep Architectures for AI,” Foundations and Trends® in Machine Learning, 2(1), 1-127 
(2009). 

[13] L. van der Maaten, and G. E. Hinton, “Visualizing Data using t-SNE,” Journal of Machine Learning Research, 
9, 2579-2605 (2008). 

[14] E. Becht, L. McInnes, J. Healy et al., “Dimensionality reduction for visualizing single-cell data using UMAP,” 
Nature Biotechnology, 37, 38 (2018). 

 

Proc. of SPIE Vol. 11016  1101608-8
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 16 May 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use


