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Abstract—Bacterial contamination of food products is a serious 
public health problem that creates high costs for the food-
processing industry. Rapid detection of bacterial pathogens is the 
key to avoiding disease outbreaks and costly product recalls 
associated with food-borne pathogens. Automated identification 
of pathogens using scatter patterns of bacterial colonies is a 
promising technique that uses image processing and machine 
learning approaches to extract features from forward-scatter 
patterns produced by irradiating bacterial colonies with red laser 
light. The feature vector used for this approach can consist of 
hundreds of features, and a sufficiently large number of training 
images is required for accurate classification. As most feature 
extraction algorithms have high computational cost, the feature 
extraction step becomes the bottleneck in the whole processing 
pipeline. Computational grid technologies provide a promising 
and economical solution to this problem. In this work we report 
the implementation of the laser-scatter-analysis technique on a 
computational grid. A set of more than 2000 images was used for 
training of classifiers. The invariant form of Zernike moments up 
to order 20, radial Chebyshev moments, and Haralick features 
were extracted. Linear discriminant analysis and support vector 
machine classifiers were used for classification. We report speed-
ups achieved and the scalability of this approach for large sets of 
images and for higher-order moments. Laser-scatter-analysis 
technique combined with computational grid technology offers a 
feasible and economic solution for rapid and accurate detection 
and classification of bacterial contamination. 

Keywords-Bacterial contamination; grid computing; feature 
extraction;  classification 

I.  INTRODUCTION 
Food products contaminated by bacteria are a serious risk 

for the public and are responsible for various disease outbreaks 
and health hazards. Contaminated products also generate 
serious costs for the food-processing industry because of 
product recalls. Fast and accurate identification of pathogens 
present in the contaminated products is extremely important in 
order to avoid the harmful effects of such contamination. 
Numerous analysis techniques have been proposed for this 
purpose [1, 2]. Most current methods utilize expensive 
biochemical or molecular biology–based technologies and 
require complex sample preparation for accurate pathogen 
detection and recognition. Analysis and classification of 
microorganisms using forward-scatter patterns is a newly 
proposed, inexpensive, label-free technique [3, 4]. This 

approach requires a laser to illuminate bacterial colonies grown 
on agar plates, and a digital camera connected to a computer to 
collect information about forward-scattered light patterns. A 
number of different features, including Zernike moments, 
Chebyshev moments, and Haralick texture features, are 
extracted from the resultant patterns, providing the means for 
automated, rapid classification. This new technique provides 
reproducible results and does not require any special chemical 
treatments or sample preparation. However, accurate 
classification requires that the classifiers be trained and 
optimized using large training sets, even if just a few bacterial 
classes are detected. Extracting higher-order shape moments 
and texture features from large sets of patterns is extremely 
time consuming and becomes the bottleneck for classifier 
optimization. Hence the speed of the feature extraction step 
determines the speed of training. For industrial application, 
where thousands of samples may need to be processed rapidly, 
feature extraction slows down the testing phase as well. 
Computational grid technologies provide a cost-effective 
solution to this problem [5]. Computational grids harness the 
computing power of commodity, heterogeneous resources that 
are not subject to centralized control, and make these resources 
available to applications that need them. Grid technologies 
provide an economical solution to meet the high-throughput 
computing needs of researchers by integrating diverse 
computing resources. This integration of resources has been 
made possible by grid toolkits like Globus and Condor [6, 7]. 
Condor is a distributed software system that manages diverse, 
heterogeneous computing resources and makes them available 
for compute-intensive jobs as a single resource. Globus is an 
open-source toolkit used for building grid systems. It provides 
tools for resource management, communication, process 
creation, and data access. In recent years computational grid 
technologies have been used for many applications in 
bioinformatics, such as the analysis of protein folding and 
biological sequence alignment [8-11].     

In this paper, we describe the implementation of the 
forward scatter–based bacterial identification system on a 
computational grid. The processing pipeline of the serial 
implementation is shown in Fig. 1. The scatter patterns 
produced by scattering of laser light from bacterial colonies are 
first preprocessed to remove experimental artifacts. This 
involves image centering and adaptive histogram equalization. 
Image features are then extracted from these images. The 
output of the feature extraction step is a feature vector that 



contains many hundred features. The most discriminative 
features are then selected and the classifier is trained on these 
features. The trained classifier can then be used for classifying 
test scatter patterns of bacterial colonies. The feature extraction 
is the most computationally expensive processing phase. Hence 
significant improvement in processing time can be achieved by 
speeding up this step of the processing pipeline. We 
implemented the feature extraction process on the grid 
maintained by our university. The image set is processed in 
parallel on the grid for feature extraction and these features are 
then used for classification.  

 

 

Figure 1.  Processing pipeline for laser scatter technique. 

The main contribution of this paper is a fast implementation 
of light-scatter technique that makes this technique feasible and 
economic for rapid and accurate classification, and for 
widespread use. Feature extraction during the training of 
classifiers is computationally the most expensive step and it 
benefits greatly from grid computing. In industrial settings 
where hundreds or thousands of potential cases of 
contamination are to be analyzed, grid implementation can 
significantly help the testing phase as well. The fast 
implementation also makes it possible to train the classifiers on 
much larger data sets than is possible with sequential 
implementation. These larger training sets improve the 
classification accuracy of classifiers.  We also explore the 
computational cost of higher-order shape moments, which can 
potentially improve classifier performance. Grid computing as 
the enabling technology paves the way for developing a large 
database of scatter patterns for numerous species of bacteria. 
Classifiers trained on such a database would be able to quickly 
detect and classify a wide variety of bacterial contaminations.    

The organization of the paper is as follows. Section II 
describes the forward scatter–based bacterial identification 
technique. Section III discusses image features and 
classification algorithms used for colony identification. 
Implementation of feature extraction algorithms on the grid is 
explained in Section IV. Section V presents the results of 
experiments and Section VI concludes the paper.  

II. BACTERIAL CULTURES AND THE LASER 
SCATTEROMETER 

The bacterial cultures, including various species and strains 
of Listeria, E. coli, Salmonella, Staphylococcus, and Vibrio, 
were serially diluted in sterile 20 mM phosphate buffered 
saline (PBS), pH 7.4, so that the dilutions would produce about 
30-50 colonies per plate. The diluents were evenly distributed 
on the surface of brain heart infusion (BHI) agar plates in 
duplicate and were incubated at 37°C for 18-36 h or until the 
colony reached 1.8 to 2 mm in diameter. The thickness of the 
colony (along the optical axis) was measured from the surface 
profile data obtained by a laser triangulation probe (Microtrak 
II Laser Displacement Sensor System, MTI instruments Inc., 
Albany, NY), and was typically around 0.3 to 0.4 mm. The 
laser scatterometer has been described in detail in [3, 4]. 
Briefly, scatter patterns from bacterial colonies with a diameter 
of approximately 1.8 to 1.9 mm and a thickness of around 0.3 
to 0.4 mm were collected using the laser scatterometer system. 
The laser generated a collimated beam of light on the order of 1 
mm in diameter (at the 1/e2 irradiance points) that was directed 
through the center of the bacterial colony and the substrate of 
bacterial agar medium. The forward-scattered light and the 
transmitted light formed the scatter patterns on the detector. 
The resultant images (640x480 pixels) were cropped to 
300x300 pixels by keeping the center of the circularly shaped 
scatter patterns in the geometric center of the image and 
selecting a 300x300 rectangle around it. 
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III. PROCESSING ALGORITHMS FOR BACTERIAL COLONY 
IDENTIFICATION 

A. Feature extraction 
Feature extraction is the identification of particular 

characteristics of an object of interest in an image. The proper 
selection of these characteristics is the key to the success of 
many recognition and analysis tasks. The features we used for 
our analysis include Zernike and Chebyshev moments, and 
Haralick texture. Since their introduction by Hu [12], moments 
have been utilized in numerous applications ranging from 
optical character recognition and face recognition to image 
registration. Such features capture intrinsic information about 
the image and do not require objects with closed boundaries. 
For a 2D continuous function f(x,y), moments have the general 
form of , where  is a 

polynomial in x and y with powers p and q, respectively. The 
different polynomials lead to different types of moments.  If 
f(x,y) is a digital image, then . 

∫∫= dxdyyxhyxfM pqpq ),(),( ),( yxh pq

∑∑=
x y

pqpq (x,y)f(x,y)hM

One important aspect of feature extraction is to find suitable 
features for a specific application. Owing to the circular nature 
of scatter patterns, we used features with radial properties 
(Zernike and radial Chebyshev (Tchebichef) moment 
invariants). Additionally, as bacterial scatter patterns exhibit 
specific textures, we used Haralick texture features as another 
input to the classifier. 



B. Zernike polynomials and moments 
In (r, θ) polar coordinates, the Zernike radial polynomials 

Rnm(r) are defined as [13] 
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where n is a non-negative integer, and m is a non-zero integer 
subject to the following constrains: n-|m| is even, and n ≥ |m|. 
The (n,m) order of the Zernike basis function Vnm(r, θ), defined 
over the unit disk is 

( , ) ( ) exp( )nm nmV r R r jmθ θ=    (2) 

The Zernike moment of an image is then defined as 
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where V*nm is a complex conjugate of Vnm. 

To compute the Zernike moments of a given image, the 
center of the image is taken as the origin and pixel coordinates 
are mapped to the range of the unit circle. Under rotation, the 
orientation angles of the Zernike moments change but their 
magnitude remains unchanged. Therefore, the magnitudes of 
Zernike moments |Znm| can be used as rotation-invariant 
features. 

C. Chebyshev polynomials and radial moments 
Chebyshev moments, unlike Zernike, belong to the class of 

discrete orthogonal moments. Therefore the implementation 
does not involve any numerical approximations. The scaled 
Chebyshev polynomials tn for an image of size NxN are 
defined according to the following recursive relations [14, 15] : 
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The radial Chebyshev moments of order p and repetition q are 
defined as 
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In the above equation, both r and θ take integer values. The 
mapping between (r,θ) and image coordinates x, y is given by 

 
cos sin

2( 1) 2 2( 1) 2
rN N rN Nx y
m m

θ= + =
− −

The m and n constants can be selected to suit the desired 
sampling frequency. Typically m has a value which is at least 
N/2, and n is 360 when the image is sampled at one-degree 
intervals. As with Zernike moments, it can be shown that 
magnitudes of radial Chebyshev (|Spq|) moments are invariant 
to rotation. 

D. Texture analysis and Haralick texture features 
A primary tool for quantifying texture is a gray-level co-

occurrence matrix. These  matrices are used to quantify the 
number of occurrences at various distances and angles of pixel 
intensity values with respect to each other. The so-called 
Haralick texture features are then employed to extract 14 low- 
and high-frequency (depending on the distance from each other 
of pixels used in the co-occurrence matrix) texture properties 
[16, 17]. We used the mean and the range of 12 of these 14 
features, which constitutes 24 features per image. 

Formally, let image I have Nx pixels in the horizontal 
direction and Ny pixels in the vertical direction. Suppose also 
that there are Ng distinct gray-tone levels in the quantized 
(digital) image. Let Lx = 1, 2, … , Nx be the horizontal spatial 
domain, Ly = 1, 2, … , Ny be the vertical spatial domain, and G 
= 1, 2, …, Ng be the set of Ng distinct gray levels (tones). The 
texture-context information in image I is contained in the 
overall or “average” spatial relationship which the gray tones in 
image I have with one another. More specifically, this texture-
context information is adequately specified by the matrix of 
relative frequencies Pij with which two neighboring pixels 
separated by a distance d occur on the image, one with gray 
level i and the other with gray level j. Such matrices of gray-
tone spatial-dependence frequencies are a function of the 
distance between them. A pixel has (excluding the borders) 
eight nearest-neighbor pixels (north, south, east, west, 
northwest, northeast, southwest, southeast).  

After the number of pixel pairs R used in computing a 
particular gray-tone spatial-dependence matrix is obtained, the 
matrix can be normalized by dividing each entry in the matrix 
by R. Note that only the distinct gray levels are used to build 
the P matrices. If the gray levels are in the range [0, 255] and 
all are used in the image, then the P matrix will be a 256-by-
256 matrix. Using the co-occurrence matrix, we can quantify 
texture using features such as angular second moment, contrast, 
sum average, sum variance, inverse difference moment, sum of 
squares (variance), entropy (a measure of randomness), sum 
entropy, difference entropy, difference variance, information 
measure of correlation, and maximal correlation coefficient 
[16, 17]. 

θ +

subset of features based on their discriminative power, whereas 
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E. Feature selection 
Feature selection deals with the problem of selecting the 

most relevant subset of features [18, 19]. Feature selection is an 
important analysis step for applications that have to deal with a 
large number of features. Among the benefits of feature 
selection are reduced measurement, storage, and processing 
time; faster and more accurate classifiers; and an improved 
understanding of the underlying data-generation process [19]. 
Feature subset selection methods are generally divided into 
filter and wrapper methods [20]. Filter approaches select a 



wrapper approaches select a subset of features by wrapping the 
feature selection process around the classifier. The performance 
of the feature selection process, in the wrapper approach, is 
judged by the performance of the classifier. Variable ranking is 
a filter approach that ranks variables according to their capacity 
to discriminate between classes found in the training set. Many 
different criteria can be used for ranking features. For our 
experiments we used Fisher’s criterion, which selects features 
based on the ratio of inter-class variance to intra-class variance 
[21].   

F. Machine learning 
ools and algorithms that learn 

thro

IV. IMPLEMENTATION OF FORWARD SCATTER–BASED 
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scatter images.  

Processing step Time (sec) 

Machine learning deals with t
ugh experience. Machine learning algorithms are generally 

divided into different categories that include supervised and 
unsupervised algorithms. In the supervised case the learning 
algorithm is provided with labeled examples which it uses for 
learning, whereas in the case of unsupervised learning such 
examples are not provided. Numerous algorithms have been 
proposed for supervised and unsupervised learning. These 
include decision trees, maximum likelihood classifiers, neural 
networks, and support vector machine (SVM) classifiers [22]. 
For our application we used an SVM classifier. SVM 
algorithms attempt to maximize the margin between different 
classes [23]. SVM algorithms achieve this by mapping the 
input to a higher dimensional space and constructing the 
separating hyperplane. In our case, extracted features were 
selected based on Fisher’s criterion, and the SVM classifier 
was first trained on these examples and then used for 
classifying previously unseen scatter patterns. 

BACTERIAL IDENTIFICATION ON THE GRID      

Grid computing provides high-throughput co utin
ources. Applications that have extensive parallelism and do 

not require significant message passing can best utilize the grid 
resources. As all the images used for feature extraction are 
processed independently, this application is ideally suited for 
grid computing. A block diagram of the sequential processing 
steps is shown in Fig 1. The images are first centered and 
adaptive histogram equalization is performed. Image features, 
including Zernike moments, Chebyshev moments, and 
Haralick texture features are extracted and the classifier is 
trained on these features. The run times on a single processor 
for preprocessing, feature extraction, and classification for a set 
of 20 images are shown in Table I. As is obvious, the feature 
extraction step is the most compute-intensive and slows down 
the bacterial identification process. With this observation in 
mind, we implemented the feature extraction step on the grid. 
The pipeline for parallel implementation is shown in Fig. 2. 
Scatter images are first preprocessed in a serial manner and 
then parallel jobs for feature extraction are submitted to 
Condor. The task distribution module does load balancing and 
assigns jobs evenly to available processors, making sure that 
the workloads of any two processors do not differ by more than 
one image. The feature vectors produced by these parallel jobs 
are then integrated, and input to the classifier. The classifier is 
trained on these training data and is used for classifying test 

TABLE I.  TIME TAKEN BY DIFFERENT PROCESSING STEPS. A TOTAL OF 
20 IMAGES WERE USED 

Preprocess  < 10 ing
Feature extraction 3853 
Classification < 10 

 

 

e 2.  Processing pipeline for implementation of laser-scatter analysis 
technique on the grid. 
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The grid environment at our university consists of several 
hi  
computers as shown i lusters are owned by 
different

gh-performance clusters and a network of commodity
n Fig. 3. These c

 research groups. When processors in these clusters are 
idle, they are made available to the Condor job scheduler. 
Cluster A consists of Dell X86_64 EM64T systems. It has 512 
nodes that have 3.2 GHz Pentium IV dual processors. Each 
node has 4 GB of memory and the system has a total disk space 
of 20.48 TB. The nodes are connected using Gigabit Ethernet. 
Cluster B consists of Dell IA-32 Pentium IV systems with 
processor speed of either 3.06 GHz or 3.2 GHz. It has 308 
nodes with two processors on each node. The system has a total 
disk space of 11.088 TB. The nodes of this cluster are 
interconnected through Gigabit Ethernet and in some cases 
with InfiniBand. Cluster C has 132 nodes that consist of HP 
X86_64 AMD64 systems. It has a total disk space of 6.72 TB. 
The nodes of this cluster are connected with either Gigabit 
Ethernet or InfiniBand. Each node of cluster D has two 900 
MHz Itanium IA-64 I2 processors. Each node has 8 GB of 
memory. This system has a total disk space of 372 GB. The 
nodes in this system are connected with Gigabit Ethernet. 
Cluster E consists of machines that have been phased out by 
instructional labs and other departments. Processors in this 
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cluster have various processing speeds and memories and are 
interconnected through 100MB or Gigabit Ethernet.    

 

 

Figure 3.  The Condor pool consists of 4 tightly coupled clusters and one 
cluster of commodity processors. 

 

For our experiments we used a set of 2234 scatter patterns 
produced by bacterial colonies. Each pattern had a size of 
300x300 pixel bacterial species used incl d E. coli, 
Listeria, Sal el Vibrio. A 
rep
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V. EXPERIMENTS AND RESULTS  

s. The ude
mon la, Staphylococcus, and 

resentative set of scatter patterns measured for 
Staphylococcus and Salmonella colonies is shown in Fig. 4. All 
of the feature extraction algorithms were implemented in 
Matlab. Since Condor runs at a lower priority on clusters 
compared to batch jobs submitted through portable batch 
system (PBS), a Condor job is evicted if a higher priority job is 
assigned to the same node. The Matlab jobs are not check-
pointed in Condor, and therefore job eviction causes the jobs to 
restart from the beginning. In order to minimize the chances of 
job eviction we used the processors with maximum processing 
power (using kflops and rank features in Condor script). A 
maximum of 16 processors were used for our experiments.  

 
 
A. Speed-up and scalability for feature extraction 

n
of 1
from 1 to 16. The execution times are shown in Tab

ultant speed-ups are linear with respect to the number of 
processors as shown in Fig. 5, suggesting that this approach is 
easily scalable. In the subsequent experiment, we fixed the 
number of processors at 16 and scaled the number of scatter 
patterns from 32 to 512. The resultant execution times are 
shown in Fig. 6. We observed that the runtimes are linear with 
respect to the number of scatter patterns and thus scaling to 
higher number of images is possible.    

   

 
                     (a)                                            (b) 

 
                        (c)                                           (d)                

Figure 4.

 

TABLE II.  RUN TIME AND SPEED-UP FOR DIFFERENT NUMBER OF 
RO

Number of 

  Representative images of scatter patterns formed by (a) Salmonella 
copenhagen (b) Salmonella enteriditis 13096 (c) Staph. aureus S41 (d) Staph. 

epi ATCC35547. 

 

P CESSORS. A SET OF 128 IMAGES WAS USED 

Time (sec) Speed-up 
processors  
1 22640 1 
2 11382 1.99 
4 6176 3.67 
8 3098 7.31 
16  1547 14.63
 

B. Scalability for order of moments 
T eriments was to analyze 

the
he objective of the next set of exp

 scaling behavior of higher-order moments. We used 16 
processors and a set of 64 scatter images. Zernike moments of 
order 10 through 30 were calculated in steps of 5. The resulting 
run times are shown in Fig. 7. We observed a sharp increase in 
the run time after order 25, suggesting that calculation of 
higher-order moments requires increased processing power. In 
another experiment, radial Chebyshev moments of order 10 
through 50 were calculated in steps of 10 using 16 processors 
and a fixed set of 64 scatter patterns. The run times are shown 
in Fig. 8. We noted good scaling behavior of Chebyshev 
moments up to order 40, after which a sharp increase in the 
processing requirements occurred.  
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Figure 5.  Scaling processors for a set of 128 scatter patterns. 
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Figure 6.  Scaling scatter images for 16 processors. 
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Figure 7.  Scaling order of Zernike moments for 16 processors and 64 scatter 

patterns. 
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Figure 8.   Scaling order of Chebyshev moments for 16 processors and 64 
scatter patterns. 

C. Classification results 
To demonstrate practical application of the forward-scatter 

analysis technique a set of 2234 scatter images representing 
various strains of E. coli, Listeria, Salmonella, Staphylococcus, 
and Vibrio was used. Feature extraction was performed using 
16 processors and the job was completed in less than 8 hours. 
Zernike moments up to order 20, Chebyshev features up to 
order 16, and Haralick features with distance 20 were 
calculated. This resulted in a feature vector of size 496 (240 
features for Zernike moments, 136 features for radial 
Chebyshev moments, and 120 features for 5 different Haralick 
distances). Feature extraction was followed by feature selection 
using Fisher’s criterion. Sets of 30-240 most discriminative 
features were selected for construction of an SVM-based 
classifier. The classification success was estimated using 5x2 
cross validation: the data set is permutated randomly, and is 
divided into 2 disjoint sets (a “training” set and a “test” set). 
The process in repeated 5 times. In every iteration, the “test” 
set is used to estimate the classification success (sensitivity and 
accuracy) of the classifier trained on the “training” set. 
Although the sensitivity of the method for all the tests species 
was above 80%, for the sake of brevity we present 
classification results only for Salmonella and Staphylococcus 
spp. Table III shows the classification results for Salmonella 
spp. obtained with the SVM system. The F-score representing 
the classification success varies from around 0.84 to 0.98. Fig. 
9 shows the canonical plot for different strains of Salmonella. 
One may note that S. enteriditis PT4 and S. enteriditis 13096 
are the two classes most difficult to separate by a linear 
discriminant classifier. Table IV shows the classification results 
for Staphylococcus spp. The F-score varies from around 0.80 to 
1.00. Staph. aureus ATCC13301 showed the lowest 
classification accuracy while Staph. aureus PS103 was always 
correctly recognized. Fig. 10 shows the canonical plot for 
different species of Staphylococcus. We observe that Staph. 
aureus ATCC13301 and Staph. epidermidis ATCC35547 are 
the two classes most difficult to separate. 
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Figure 9.  Canonical plot showing separation of classes in linear space. S. 
enteriditis PT4 and S. enteriditis 13096 are the two classes most difficult to 
separate. 
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Figure 10.  Canonical plot showing separation of classes in linear space. Staph. 
aureus ATCC13301 and Staph. epidermidis ATCC35547 are the two classes 
most difficult to separate. 

VI. CONCLUSION              

In this paper we present an application of grid computing for 
rapid detection and classification of bacterial contamination. 
We used computational grid technology for meeting the 
enormous processing requirements of the bacterial scatter 
detection technology. This new technique for detection and 
classification of bacterial contamination has a high 
computational cost for the feature extraction process, which 
severely impacts the training and optimization procedures. The 
use of a computational grid provides an efficient and cost-
effective solution for the rapid training required for bacterial 
identification. We report the speed-ups achieved and the 

scaling behavior of our implementation. A total of 2234 scatter 
patterns were used for training the classifier. This load was run 
on 16 computers and the feature extraction was completed in 
less than 8 hours. The same task took more than 85 hours on a 
desktop computer having an AMD Athlon 64 processor 
running at 2.21 GHz with 2 GB of memory. The approach 
shows nice scalability properties in number of machines and 
size of the data set, which suggests that a higher number of 
processors will result in a proportional improvement in 
execution time. Grid technology is an economic solution for 
the high computational cost of bacterial scatter detection 
technique and makes this new technique a feasible and 
practical approach for rapid detection and classification of 
bacterial contamination.    

TABLE III.  CLASSIFICATION SUCCESS FOR SALMONELLA SPP 

Salmonella spp. Sensitivity Accuracy F-score 
S. copenhagen 0.8105 0.9145 0.86

S. enteriditis 13096 0.8809 0.9311 0.90
S. enteriditis PT28 1 0.9719 0.98
S. enteriditis PT4 0.9404 0.8451 0.89

S. tennessee 0.859 0.8333 0.84

 

TABLE IV.  CLASSIFICATION RESULTS FOR STAPHYLOCOCCUS SPP  

Staphylococcus spp. Sensitivity Accuracy F-score 
Staph. aureus S41 0.9522 0.9438 0.95 

Staph. hylicus T6346 0.9855 0.9714 0.98 
Staph. aureus PS103 1 1 1 

Staph. aureus  
ATCC13301 

0.8087 0.7983 0.80 

Staph. epi. 302 0.8968 0.9521 0.92 
Staph. epi. 

ATCC35547 
0.8222 0.8296 0.82 
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