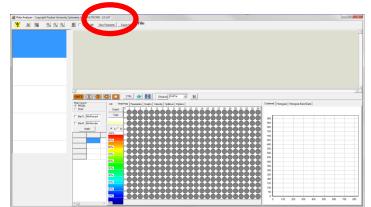
SOP-S006

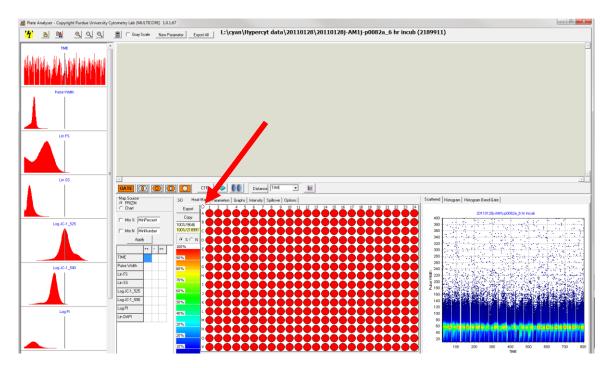

Analyzing Amgen Data Sets using Plate Analyzer

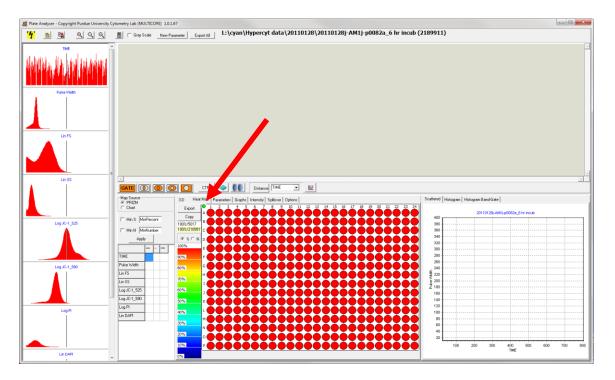
Objective: The goal of this SOP is to create protocols to visualize and analyze dose response curves and Kolmogorov-Smirnoff (KS) distance response curves

Procedures:

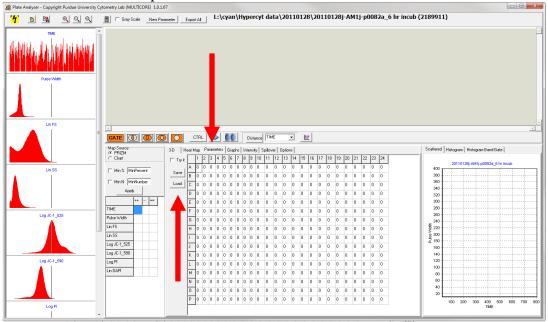
To create dose response curves and export response data:

- 1. Open the most recent version of Plate Analyzer.
 - a. To get the most recent version, go to scratch\Valery\platan. **DO NOT** open Plate Analyzer from this folder.
 - b. Copy the file "PlatAn.exe" into a new directory and open from here.
 - c. If the number in the upper left is higher than the number of the version already copied to the computer, than the version you just copied is more recent and should be used. You can also check the date modified.

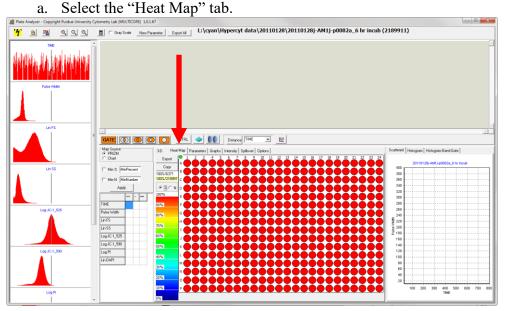

2. Click on the "lightning bolt" icon in the upper left corner.


Analyser - Copyright Purdue Unive		
<u> </u>	G Grey Scale New Parameter Export Al File	
	GATE 💽 🔘 🖸 CTRL 🧇 🚺 Distance DisPw 🖃 🛃	formation that was to
	CATE C CTRL E Matrix Strate 30 HeatMap Parameters Graphs Intensity Splacer Options	Scattered Histogram Histogram Band Gale
	GATE 💽 🔘 🖸 CTRL 🧇 🚺 Distance DisPw 🖃 🛃	Scatterd Hangson Hangson Band Gare
	CATE C CTRL E Matrix Strate 30 HeatMap Parameters Graphs Intensity Splacer Options	
	Control C	900
	Matter Model Clink Model Dataced Partners Me Mage Statest or Procest Tobal 30 Hast Mage Paraneters Gradest Gradest Solutions (Splares) Splarest S	
	Control C	500
	Matter Model Clink Model Dataced Partners Me Mage Statest or Procest Tobal 30 Hast Mage Paraneters Gradest Gradest Solutions (Splares) Splarest S	
	Matter Model Clink Model Dataced Partners Me Mage Statest or Procest Tobal 30 Hast Mage Paraneters Gradest Gradest Solutions (Splares) Splarest S	900
	Matter Model Clink Model Dataced Partners Me Mage Statest or Procest Tobal 30 Hast Mage Paraneters Gradest Gradest Solutions (Splares) Splarest S	
	Matter Model Clink Model Dataced Partners Me Mage Statest or Procest Tobal 30 Hast Mage Paraneters Gradest Gradest Solutions (Splares) Splarest S	900 900 900 700 700 900 900 900 900 900
	Matter Model Clink Model Dataced Partners Me Mage Statest or Procest Tobal 30 Hast Mage Paraneters Gradest Gradest Solutions (Splares) Splarest S	
	Matter Model Clink Model Dataced Partners Me Mage Statest or Procest Tobal 30 Hast Mage Paraneters Gradest Gradest Solutions (Splares) Splarest S	
	Matter Model Clink Model Dataced Partners Me Mage Statest or Procest Tobal 30 Hast Mage Paraneters Gradest Gradest Solutions (Splares) Splarest S	
	Matter Model Clink Model Dataced Partners Me Mage Statest or Procest Tobal 30 Hast Mage Paraneters Gradest Gradest Solutions (Splares) Splarest S	
	Matter Model Clink Model Dataced Partners Me Mage Statest or Procest To Mat Sol Hast Mage Paraneters Gradest Gradest Solence	
	Matter Model Clink Model Dataced Partners Me Mage Statest or Procest To Mat Sol Hast Mage Paraneters Gradest Gradest Solence	
	Matter Model Clink Model Dataced Partners Me Mage Statest or Procest To Mat Sol Hast Mage Paraneters Gradest Gradest Solence	
	Matter Model Clink Model Dataced Partners Me Mage Statest or Procest To Mat Sol Hast Mage Paraneters Gradest Gradest Solence	
	Matter Model Clink Model Dataced Partners Me Mage Statest or Procest To Mat Sol Hast Mage Paraneters Gradest Gradest Solence	
	Matter Model Clink Model Dataced Partners Me Mage Statest or Procest To Mat Sol Hast Mage Paraneters Gradest Gradest Solence	
	Matter Model Clink Model Dataced Partners Me Mage Statest or Procest To Mat Sol Hast Mage Paraneters Gradest Gradest Solence	

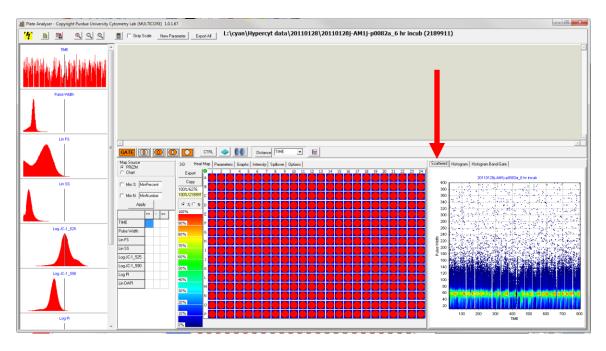
3. Choose a data set and select OK.


<u>4</u> 9 8 979	Gray Scale Export All		-x-	
	Image: Section of the sectio	Heam for late! Mark Hild Natures Mark Hild Nature		Scattered (takyon) Margam Encloses 00

4. On the view of the 384-well plate, click the dot above the "A" and before the "1". This exchanges data between the well plate and the scatter plot/histogram in the lower right corner. It should turn green.

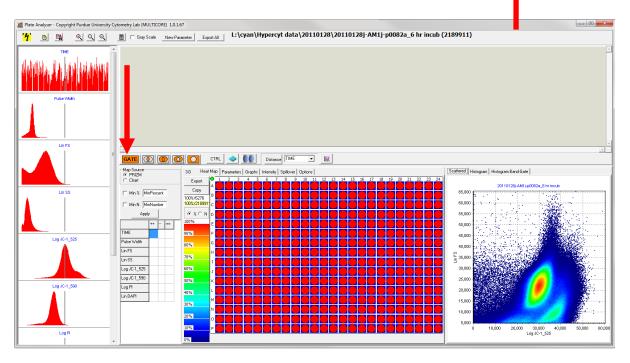


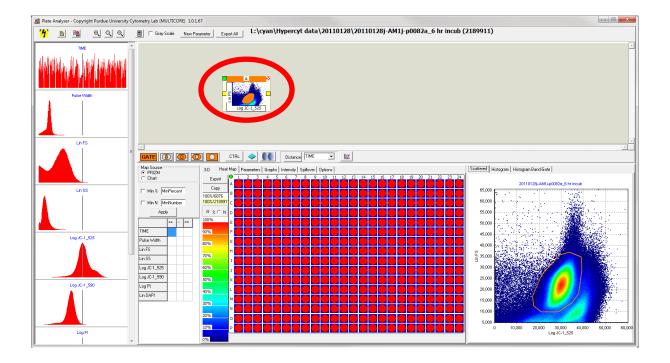
5. <u>Entering compound concentrations</u>: a. Select the parameters tab.

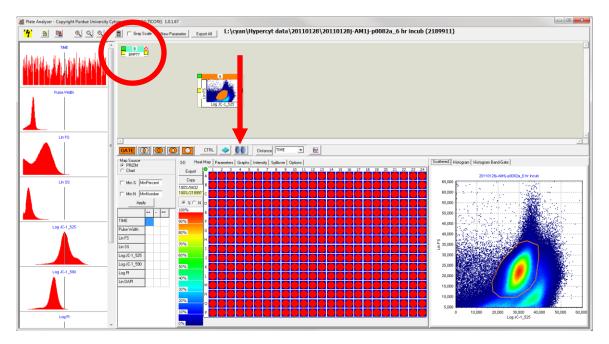


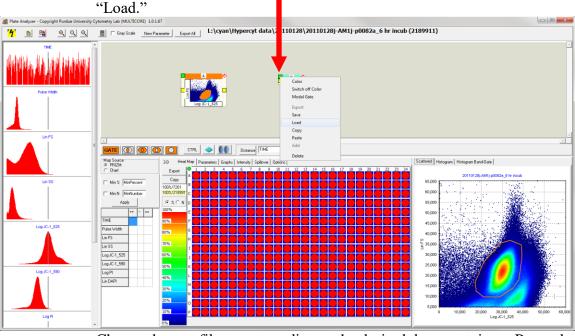
- a. If concentrations have already been saved, they can be opened by selecting "Load" and opening a premade parameters chart.
 - a. Amgen screening list is found at lab L:\cyan\Parameters\drugconcentrations 10
- b. Otherwise. enter the compound concentrations for each well.
 - a. Concentrations can be added by column by selecting "try it."
- c. Select "Save" and save the concentrations to a desired directory.

6. <u>Creating Gates</u>:


- b. Highlight every well on the 384-well plate.
- c. Select the scattered plot tab in the lower right corner.

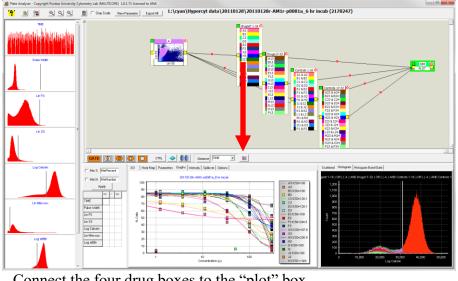

- d. In order to gate, parameters should be chosen that distinguish between normal and abnormal cells. Select parameters for the x-axis and y-axis by right-clicking on the axis title.
 - i. For JC1 assays, Lin FS (y-axis) versus Log JC1-525 (x-axis)
 - ii. For redox assays, FS (y-axis) versus SS (x-axis)


e. Select the "GATE" button.



- f. Left click multiple times on the scatter plot to draw a loop around normal cells. Right click to end the loop.
- g. A mini scatter plot with the gate should appear.

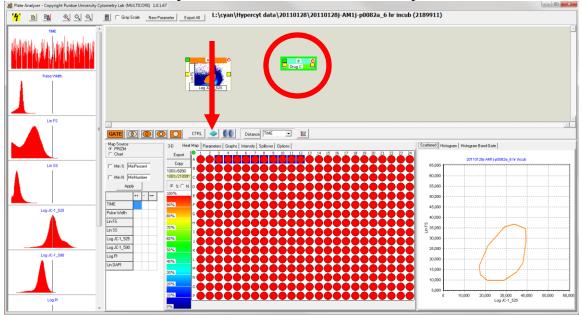
- 7. Drug containers represent the locations of drugs on the plate. If a premade drug container has not been built, proceed to Step 8. To load a premade drug container:
 - a. Select the icon depicting two pills located to the left of the "Distance" button. A box will appear.



b. Right click on the green square on the upper left of this box, and select "Load."

c. Choose the .gat file corresponding to the desired drug container. Premade containers are saved: L:\cyan\Amgen documents

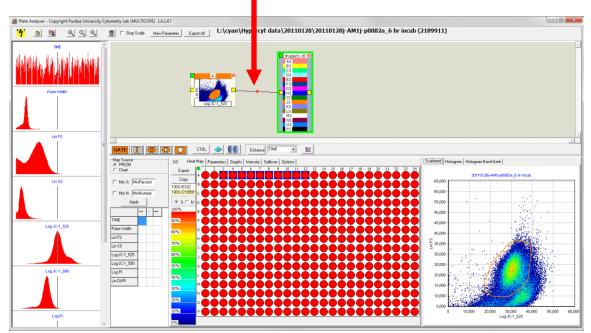
- i. For Amgen, load 4 boxes: controls 1-16 controls 17-32 normal- drugset 1-16 normal - drugset17-32
- d. The drug container should appear (it might be necessary to use the scroll bars to find the container).
- e. Connect all the drug containers to the mini scatter plot (JC1) or the histogram (redox).
- f. Select the plot button.



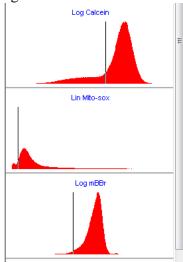
g. Connect the four drug boxes to the "plot" box.

- 8. If a premade drug container has not been built:
 - a. Select the "Heat Map" tab to the left of the "Parameters" tab.
 - b. Click on the icon of two pills to the left of the "Distance" button.
 - c. Click on the box that appears, where it says "Empty." The box should be highlighted in green.

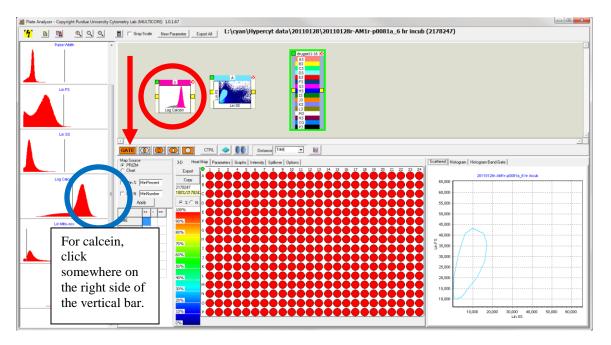
Plate Analyser - Copyright Purdue University Cytometry Lab (MULT)	CORE) 1.0.1.67	
🧏 🖹 📽 ୧୯୦୦ 🗊 ୮ Gray Scale	New Parameter Export All L:\cyan\Hypercyt data\20110128\20110128j-AM1j-p0082a_6 ht	r incub (2189911)
Lin FS		د د ا
Map Source © PRIZM	3D Heat Map Parameters Graphs Intensity Spillover Options	Scattered Histogram Histogram Band-Gate
Lin SS Thin X MinPe	100%/7201	2 23 24 20110128j-AM1 j-p0002a_6 hr incub 65,000 60,000
Appy		55,000
TIME		50,000
Log JC-1_525 Pulse Width		40,000
Lin SS		12 35,000
LogJC1_525 LogJC1_590		30,000
Log JC-1_590 Log Pl	ו•••••••••••••••••••••••••••••••	25,000
Lin DAPI		15,000
		10,000
Log Pl		0 10,000 20,000 30,000 40,000 50,000 60,000 Log JC-1_525


- d. Drag the mouse to select the wells on the 384-well plate which correspond to one drug. Alternatively, select one well, press and hold "ctrl" and click on additional wells to be included as one compound.
- e. After selecting one compound, click the drug box icon to the left of the icon of two pills. This will add the selected compound to the container.

- f. To change the name and color corresponding to a specific compound, double click on the drug box to get the "Drugs" window. Double click on the drug in the "Drugs" window to rename it or change the color. When finished, click OK or pres Enter.
- g. Repeat steps 7d 7f until all compounds have been added.

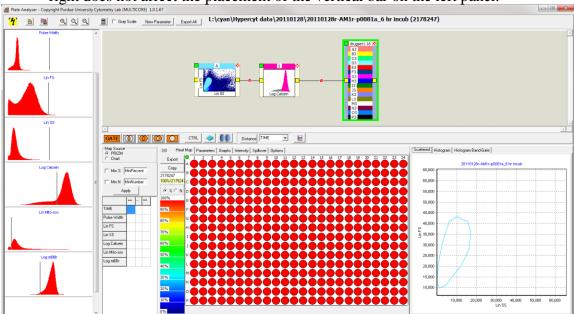

NOTE: It is recommended to not place more than 16 compounds in the same drug container so that it is easier to look at the plots.

- 9. For plates with multiple assays (redox), proceed to step 10.
 - a. For plates with one assay (JC1), draw a connecting line between the mini scatter plot and the drug container. (Left click on the yellow square on the right side of the mini scatter plot, hold the mouse, drag to the yellow square on the left side of the drug container, and release the mouse.)

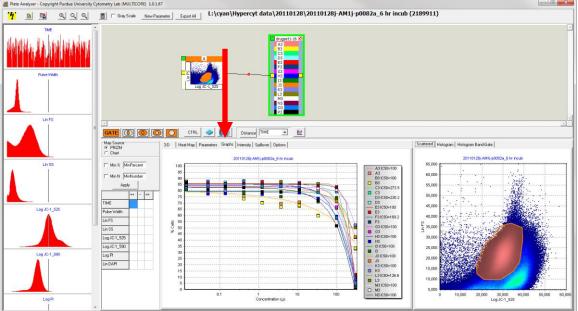


b. Skip to step 11.

- 10. Only for plates with multiple assays (redox), additional gates are required to analyze effects of the individual assays. To create a one dimensional gate from a histogram, use the panel of histograms on the left of the Plate Analyzer window.
 - a. Set the vertical threshold bar to separate the normal and abnormal cells for the desired histogram.



b. Select the "GATE" button and left click on the side of the histogram associated with the normal cells. A mini histogram should appear.


- c. Draw a connecting line from the first mini scatter plot to the mini histogram.
- d. Draw a connecting line from the mini histogram to the drug container one at a time for calcein, mitosox, and mBBr. Make sure to disconnect the old one if switching to a new histogram.

NOTE: The placement of the vertical bar in the histogram in the lower right does not affect the placement of the vertical bar on the left panel.

11. To plot the dose response, select the drug container (in the center where the drug names are). Then, select the "Graphs" tab.

Note: If a graph of curves does not appear, click on the mini scatter plot, then click on the drug container again.

12. To export data, right click anywhere on the graph. Select the "Export" icon. Save to the desired directory. Amgen data is saved to the same directory as the fcs plate files.

Purdue	University	Cytometry	Laborat	tories
--------	------------	-----------	---------	--------

Plate Analyser - Copyright Purdue University C	ytometry Lab (MULTICORE) 1.0.1		
🌴 🖻 🖺 ୧୯୧	Gray Scale New Paneter Ex	L:\cyan\Hypercyt data\20110128\20110128j-AM1j-p0082a_6 hr incub (2189	9911)
The Pulse View of Control of Cont	Geting Outcom text Out 1 Series [Sour Tools Each Poters texter Each Series [de] [Series [de] [Series (HTN Table Geting Content Content Content Content		
Lin 55	Mao Sor Gr Pola Cr Daw T Min Time		gram Hintopan Band Gate 20110128-AHI (20020, 5 tr mole
Log X-1_500	IMB COPY Saves Lin SS COPY Saves Log/C01 Lebe Copy Log PP Copy Solution Log PP Copy Solution Log PP Copy Solution Log PP Copy Solution Copy Solution Solution Solution Solution Solution		

After exporting, click "close."

To organize data into the format that Amgen wants

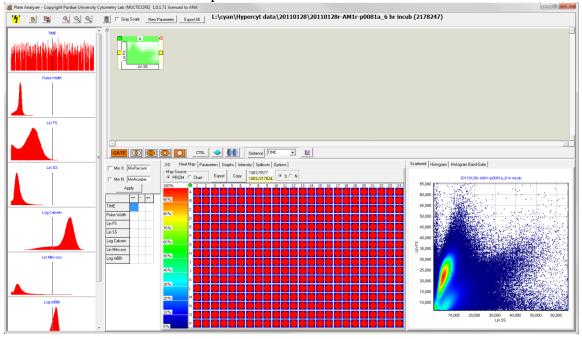
*Note: this step must be done from the computer where Nicole usually sat (that is where the macro is saved)

- 13. Open the excel data sheet created in step 12.
- 14. In the first column of numbers, select the "x".

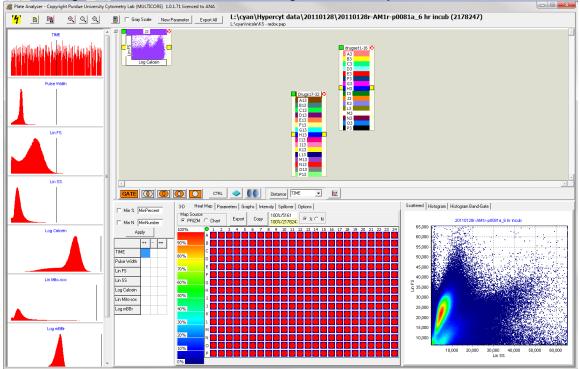
12	10 97	- (u -) =									20110128	j-AMIj-pl	0082a_6 hr inc	ub IC50 JC1.	csv - Micro	osoft Excel										-
y	Home	Insert	Page Layo	ut For	nulas Da	ta Reviev	v View	r Deve	loper																	· · · ·
il.	X Cut		Calibri	* 11	• A *		39	-Wrap	Text	General				Normal		Bad		Good	Neutral			3	Σ Auto	ium - /	A	
aste	ui Cop	y nat Painter	BIU		3- A -		(R (R	Merge	& Center -	5 - 1/4	. 28 -3	Conditi	onal Format	Calcula	tion	Check C	ell	Explanatory	Input			Delete Form	at Clear		ort & Find &	
•	Clipboard			Font	(G.		Alignm	ent	19	Numb	er (5.		ing - as Table	•		Styl	es :		-			Cells	∠ ciear	Editin	iter * Select	
	A	2	- (*	f _x	x																					
	A	В	с	D	E	F	G	H	1	1	K	L	M	N	0	р	Q	R	S	T	U	V	W	Х	Y	Z
3			a\20110128																							
Х		A3 IC50>11		3 3		3 IC50>1(X	В			C3 IC50=1!X	C3			3 IC50=2I X		D3	x	E3 IC50>1(X	E3			F3 IC50=16 X	F3			3 IC50>1(
-	0.014	79.01	0.014	78.55	0.014	78.44	0.014	80.76	0.014	84	0.014	83.29	0.014	84.62	0.014	82.3			0.014	85.66	0.014		0.014	81.91	0.014	82.58
	0.023663	78.35	0.05		0.023663	77.62	0.05		0.023663	84	0.05		0.023663	84.62 84,62	0.05		9 0.0236		0.05		0.023663	82.16	0.05		0.023663	82.58
	0.067604	76.8	0.14		0.039997	75.78	0.14		0.039997	84	0.14		0.039997	84.62	0.14		3 0.0399		0.14		0.039997	82.16	0.14		0.039997	82.57
	0.114266	75.91	1.23		0.114266	74.73	1.23		0.114266	84	1.23		0.114266	84.62	1.23		0.1142		1.23		0.114266		1.23		0.114266	82.54
	0.193136	74.91	3.7		0.193136	73.59	3.7		0.193136	84	3.7		0.193136	84.62	3.7		0.1931		3.7		0.193136		3.7		0.193136	82.51
	.326445	73.8	11.11		0.326445	72.34	11.11		0.326445	84	11.11		0.326445	84.62	11.11		6 0.3264		11.11		0.326445	82.15	11.11		0.326445	82.47
	0.551769	72.57	33.33		0.551769	70.97	33.33		0.551769	84	33.33		0.551769	84.62	33.33		7 0.5517		33.33		0.551769	82.14	33.33		0.551769	82.41
0	0.932619	71.18	100	59.76	0.932619	69.46	100	59.06	0.932619	84	100	69.65	0.932619	84.62	100	67.3	7 0.9326	9 84.25	100	65.72	0.932619	82.12	100	54.07	0.932619	82.33
	1.57634	69.61	300	26.35	1.57634	67.79	300	27.54	1.57634	84	300	4.278	1.57634	84.62	300	2.93	1.576	4 84.14	300	7.86	1.57634	82.08	300	6.651	1.57634	82.19
	2.66439	67.84			2.66439	65.94			2.66439	84			2.66439	84.6			2.664	83.97			2.66439	82			2.66439	81.97
	4.50345	65.83			4.50345	63.89			4.50345	83.98			4.50345	84.58			4.503	15 83.67			4.50345	81.83			4.50345	81.62
	7.61188	63.53			7.61188	61.59			7.61188	83.95			7.61188	84.51			7.611	8 83.19			7.61188	81.49			7.61188	81.05
	12.8659	60.89			12.8659	59.01			12.8659	83,86			12.8659	84.33			12.86				12.8659				12.8659	80.1
	21.7463	57.83			21.7463	56.11			21.7463	83.56			21.7463	83.83			21.74				21.7463				21.7463	78.47
	36.7564	54.28			36.7564	52.81			36.7564	82.57			36.7564	82.36			36.75				36.7564	75.5			36.7564	75.61
	62.127	50.11			62.127	49.06			62.127	79.17			62.127	78			62.1				62.127				62.127	70.42
	105.009	45.2			105.009	44.76			105.009	68.03			105.009	65.66			105.0				105.009				105.009	60.73
	177.49 300	39.35 32.33			177.49 300	39.8 34.04			177.49	40			177.49 300	38.11			177.				177.49				177.49 300	41.97 4.18
	300	32.33			300	54.04			300	4,275			300	2.932			3	// //034			300	0.034			300	4.10
5	H 201	10128i-A	M11-p0082	6 hr inc	1 93											1	4			_						

- 15. In the excel menu, select the developer tab.
- 16. Under the developer tab, choose "macros."
- 17. In the macro window that appears, double click Sorting4.

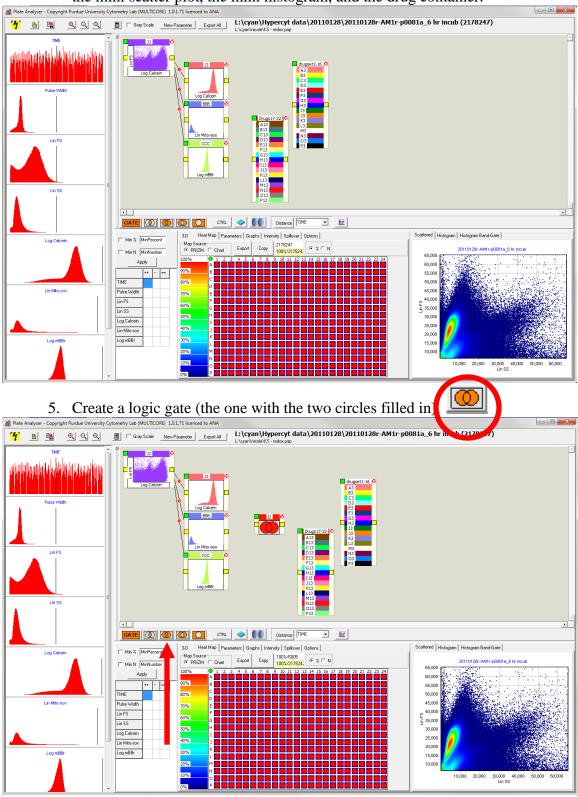
Macros Macro Securi Code	elerences	Seot	Refresh	thes 그림) dia 클) ta	Export Doc	2.) unicent inel odify															
	C D E F	G	н	- E	J	ĸ	L	м	N	0	P	Q	R	S	T	U	V	W	х	Y	Z
Cya Hypercyt data\26	110128\20110128j-AM1j-p0082a_6 hr in A3 X B3 IC50>1(X		2189911) B3		C3 IC50=1!X		C3	x	D3 IC50=2I X		23	x	E3 IC50>10X	E3		x	F3 IC50=16 X	F		x	G3 IC50>1
	0.014 78.55 0.014 78.44		014 80.7	0.014	84	0.014	83.29	0.014	84.62	0.014	82.36	0.014	84.45	0.014	85.66	0.014	82.16	0.014	81.91	0.014	82.58
02 33 78.35	0.05 80.38 0.023663 77.62		.05 . 77.	0.023663	84	0.05		0.023663	84.62	0.05		0.023663	84.45	0.05		0.023663	82.16	0.05		0.023663	82.58
03 97 Macro			8 X	0.039997	84	0.14	84.93	0.039997	84.62	0.14	85.23	0.039997	84.44	0.14	83.37	0.039997	82.16	0.14	83.04	0.039997	82.57
06 04 Macro name				0.067604	84	0.41		0.067604	84.62	0.41		0.067604	84.43	0.41	85.76	0.067604	82.16	0.41		0.067604	82.56
11 56 PERSONAL	0.581Sorting4	1160	Bun	0.114266	84	1.23		0.114266	84.62	1.23		0.114266	84.42	1.23		0.114266	82.16	1.23		0.114266	82.54
	0.5813C 1compoundsort	-		0.193136	84	3.7		0.193136	84.62	3.7		0.193136	84.4	3.7		0.193136	82.16	3.7		0.193136	82.51
PERSONAL	0.58/Sorting3 0.58/Sortino4		Step Into	0.326445	84	11.11		0.326445	84.62	11.11		0.326445	84.37	11.11 33.33		0.326445	82.15	11.11		0.326445	82.47
55 99 PERSONAL 93 9 PERSONAL			Edit	0.551769 0.932619	84	33.33 100	82.86		84.62 84.62	33.33		0.551769 0.932619	84.32 84.25	33.33		0.551769	82.14	33.33		0.551769 0.932619	82.41
L5 4 PERSONAL	est3		Create	1.57634	84	300	4.278		84.62	300		1.57634	84.14	300		1.57634	82.08	300		1.57634	82.19
2.66439	T		Delete	2.66439	84		1425555	2.66439	84.6			2.66439	83.97			2.66439	82			2.66439	81.97
.50345			Qelete	4.50345	83.98			4.50345	84.58			4.50345	83.67			4.50345	81.83			4.50345	81.62
7.61188			Options	7.61188	83.95			7.61188	84.51			7.61188	83.19			7.61188	81.49			7.61188	81.05
2.8659		-		12.8659	83.86			12.8659	84.33			12.8659	82.36			12.8659	80.75			12.8659	80.1
1.7463 Mgcros in:	A pen Workbooks	•		21.7463	83.56			21.7463	83.83			21.7463				21.7463	79.12			21.7463	78.47
6.7564 Description				36.7564	82.57 79.17			36.7564	82.36 78			36.7564	78.32 73.5			36.7564	75.5 67.66			36.7564	75.61
62.127 transpose 105.009	and controls, copies ICS0			62.127	68.03			62.127 105.009	65.66			62.127 105.009	64.26			62.127 105.009	52.45			62.127 105.009	70.42
177.49			-	177.49	40			177.49	38.11			177.49				177.49	29.55			177.49	41.97
300			Cancel	300	4.278			300	2.932			300				300	6.634			300	4.18

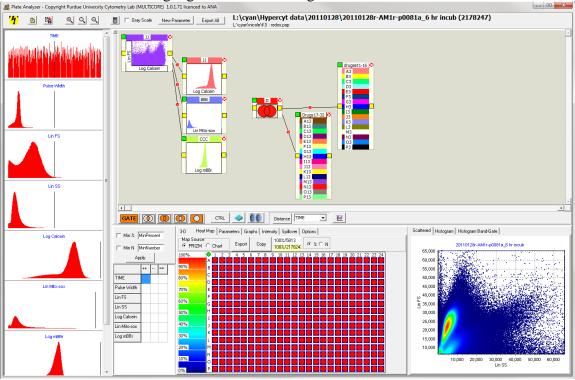

18. In the Microsoft visual basic window, select end.

) 🖬 17 - (H -) =									20110128j	-AM1j-p0082	6 hr incub IC50 JC1.csv - Microsoft Excel										- 0
Home Insert	Page Layou	rt Form	ulas Dat	ta Revi	ew View	w Devel	loper														0 -
al Macro Sec Code	ive References			Properties /iew Code Run Dialog				oport Do	Cument Panel Modify												
A2	+ (9	f _x	84.66						Microsoft Visu	al Basic											
A B	С	D	E	F	G	н	1.1	J				Q	R	S	т	U	V	W	х	Y	Z
62.127 50.11			62.127	49.06			62.127	79.17	Run-time erro	1004:		62.127	73.5			62.127	67.66			62.127	70.42
105.009 45.2			105.009	44.76			105.009	68.03	Unable to set	the Top proper	ty of the Window class	105.009	64.26			105.009	52.45			105.009	60.73
177.49 39.35			177.49	39.8			177.49	40				177.49	45.91			177.49	29.55			177.49	41.97
300 32.33			300	34.04			300	4.278				300	7.894			300	6.634			300	4.18
84.66	78.55	80.38	78.7	72.05	66.23	64.29	59.52	50.38	Continue	End	Debug Help										
82.62 83.79	80.76 83.29	77.7 85.62	75.1 84.93	70.25 83	65.97 82.03	60.05 85.34	60.26 83.67	49.67 82.86													
83.79	83.29	85.62	84.93 85.23	86.53	82.03	85.34 81.99	83.67	82.86	67.37	4.278	D3 IC50=195.7										
84.46	85.66	83.24	83.37	85.76	85.7	81.61	83.26	78.36	65.72	7.86	E3 IC50>100										
79.03	81.91	81.89	83.04	82.34	83.03	82.49	77.95	77.57	54.07	6.651	F3 IC50=107.4										
84.62	82.67	85.28	80.62	83.11	80.4	81.62	84.13	71.29	63.88	3.953	G3 IC50>140										
64.45	81.3	74.97	76.34	77.86	75.76	78.71	77.09	71.83	54.78	3.624	H3 IC50=213.4										
84.71	79.68	81.56	80.55	76.52	78.03	73.68	81.81	69.97	71.83	31.67	13 IC50>10										
66.16	81.52	83.18	84.37	83.02	81.24	81.53	69.42	78.9	70.01	31.45	J3 IC50>10										
85.46	81.16	80.95	79.73	82.43	83.27	83.25	78.78	81.5	77.58	35.82	K3 IC50>10										
76.3	85.98 82.71	83.1 83.29	83.7 82.62	83.29 83.4	81.96 81.66	85.79 83.36	82.78 81.79	83.93 79.95	80.98 79.03	33.03 3.212	L3 IC50=129.3 M3 IC50>300										
81.64	82.01	83.95	83.14	83.81	83.46	83.39	83.78	81.94	80.5	2.066	N3 IC50>100										
83.66	83.05	82.25	82.68	86.05	82.32	81.66	80.26	76.94	54.53	1.48	03 1050=214.4										
85.27	85.07	79.3	82.76	81.09	77.62	77.31	79.77	70.55	48.37	0.3922	P3 IC50=2:6.9										
85.05	85.31	82.36	83.51	84.48	84.84	83.1	83.59	81.3	63.82	17.07	A13 IC50=166.6										
83.23	84.05	84.61	82.93	82.63	83.2	84.71	82.4	79.14	60.75	14.87	B13 IC50=189										
83.64	82.3	83.66	84.07	84.7	83.32	85.85	84.16	76.94	21.42	0.1494	C13 IC50=72.44										
84.78	82.85	82.92	83.3	82.18	84.03	86.2	84.38	74.4	20.09	0.104	D13 IC50=19.11										
82.83	80.94	79.63	80.04 83.19	78.25 81.82	82.2 84.46	77.95 81.91	79.19 81.73	71.13	40.08	0.6325	E13 IC50=111.8 F13 IC50=55.83										
83.46 83.43	84.24 84.01	83.72 83.55	83.19	81.82	84.46	81.91 84.72	81.73	73.58	30.50 63.55	7.259	G13 IC50=10.1										
82.33	78.65	78.59	82.44 79.51	77.13	79.94	77.14	80.95	79.84	62.34	6.385	H13 IC50=11.7										
83.93	81.84	77.02	72.01	62.15	48.16	37.61	24.39	7.642	7.523	12.73	I13 IC50=1 597										
83.65	79.91	77.4	71.76	60.4	45.76	34.66	24.67	8.032	5.705	13.49	J13 IC50=1 372										
82.41	83.46	84.88	82.28	81.44	81.86	85.45	84.65	82.57	67.93	4.544	K13 IC50=161										
82.8	83.25	83.6	83.83	82.01	81.41	82.64	84.15	80.36	64.32	0.9921	L13 IC50=206.2										
83.52	83.03	82.14	84.31	85.42	82.82	83.86	80.13	60.97	19.54	0.269	M13 IC50=57.69										
H 20110128j-AM	03.03	04 70	67	05.00	03.01	00.71	70.24	50.61	17.05	0.1040	N110 1070 04 04	4		_				_			

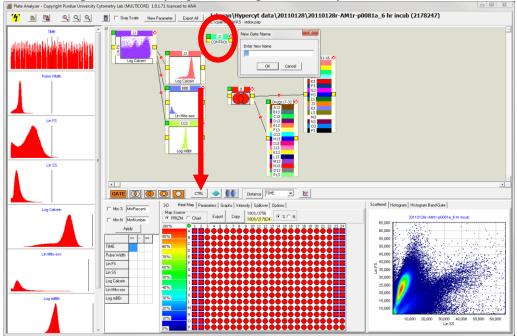

- 19. The data is now copied in the desired format.
- 20. Paste the data (ctrl + v) into the compound list to be sent to Amgen. An example compound list is provided: lab (L:) \ cyan \ JC1 example Amgen Report Sheet. It is important that the same exact format is used (paste into column H, and leave 3 lines between each plate).
- 21. Save the Amgen report sheet as "JC1," "Calcein," "mitosox," or "mBBr."

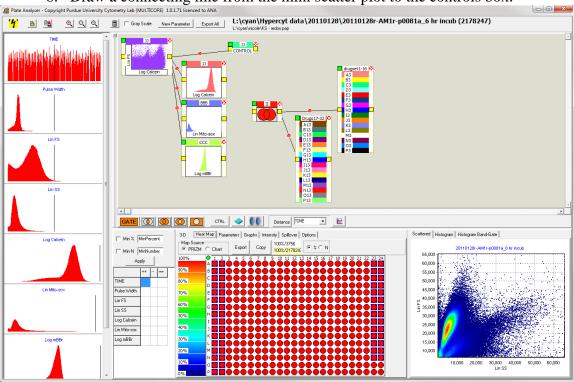
To create KS Distance response curves and export response data:


- 1. Follow steps 1-5 in the dose response protocol above.
- 2. In step 6 of the dose response protocol, the gate will be drawn around the outside of the scatter plot to include all cells.

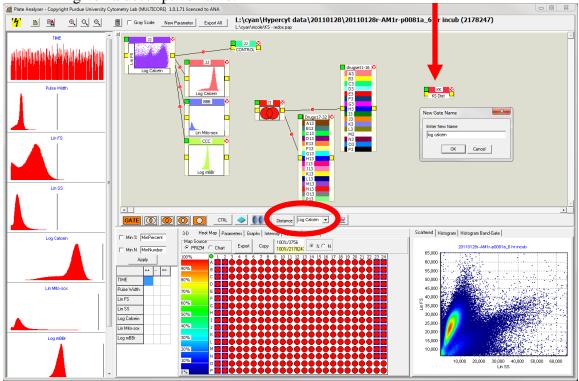

3. Create the drug boxes but not controls as in steps 7-9 of the dose response protocol above. Do not make the plot connector yet.

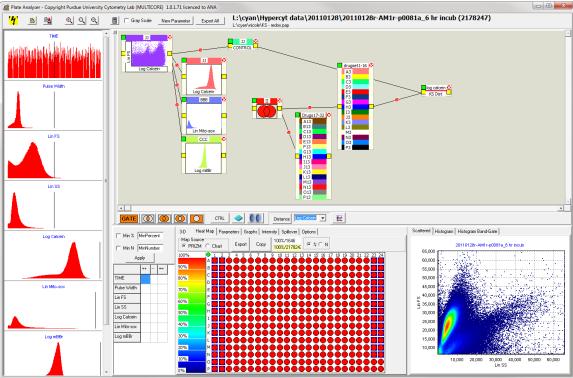
4. For a redox plate, create a gate similarly as in step 9 of the dose response protocol. Instead of setting the threshold between normal and abnormal cells, set the threshold all the way to the right. Then, draw connecting lines between the mini scatter plot, the mini histogram, and the drug container.



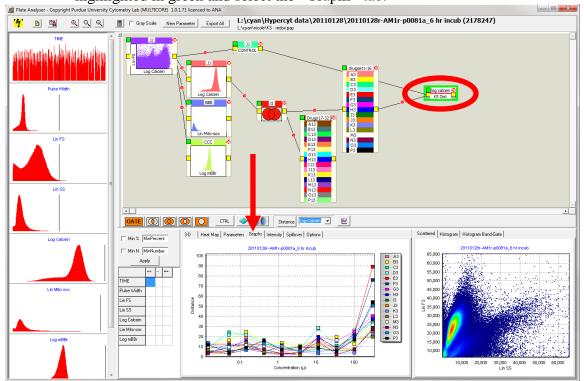

 $\label{eq:page15 of 19} Document NameW:\default\files\SOPs\5-Software Related all S SOPs\sopS006 plate analyzer.docx$

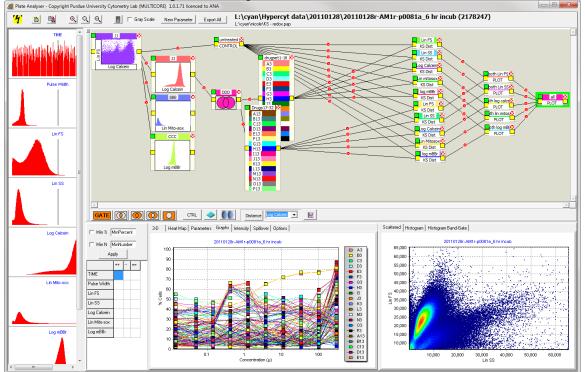
6. Connect the logic gate to the two drug boxes.


7. Create a control by highlighting the wells (e.g. A1, A2 or B1, B2, etc.) of normal untreated cells on the 384-well plate under the "Heat Map" tab. Then, select the "CTRL" button. A new box should appear and can be given a descriptive name by right-clicking where it says "control."



8. Draw a connecting line from the mini scatter plot to the controls box.


9. Select the distance measure of interest from the "Options" tab. Select the desired parameter and press "Distance." A box should appear and can be given a descriptive name.


10. Draw connecting lines from the control to the distance box and from the drug container to the distance box.

11. To see KS distance response curves, click on the distance box so that it is highlighted in green and select the "Graphs" tab.

- a. Only one drug box can be connected to a single distance box.
- b. Distance boxes should be made for each parameter that is wanted for analysis (could be a combination of FS, SS, calcein, mBBr, mitosox, etc) for each drug box.
- c. The plot connector can be used to plot all KS distances on the same graph.
- d. A final protocol might look like this:

- 12. To export data, right click anywhere on the graph. Select the "Export". Save to the directory containing the fcs files for the plate.
- 13. All Amgen files are in L:\cyan\Amgen documents

Created by: Nicole Lewis Updated Date: 07/06/2011 **Date:** October 18, 2010

Verified by:

Date:

Print Name

Sign Name