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� Abstract
Biological microparticles, including bacteria, scatter light in all directions when illumi-
nated. The complex scatter pattern is dependent on particle size, shape, refraction
index, density, and morphology. Commercial flow cytometers allow measurement of
scattered light intensity at forward and perpendicular (side) angles (28 � y1 � 208 and
708 � y2 � 1108, respectively) with a speed varying from 10 to 10,000 particles per sec-
ond. The choice of angle is dictated by the fact that scattered light in the forward region
is primarily dependent on cell size and refractive index, whereas side-scatter intensity is
dependent on the granularity of cellular structures. However, these two-parameter
measurements cannot be used to separate populations of cells of similar shape, size, or
structure. Hence, there have been several attempts in flow cytometry to measure the
entire scatter patterns. The published concepts require the use of unique custom-built
flow cytometers and cannot be applied to existing instruments. It was also not clear
how much information about patterns is really necessary to separate various popula-
tions of cells present in a given sample. The presented work demonstrates application
of pattern-recognition techniques to classify particles on the basis of their discrete scat-
ter patterns collected at just five different angles, and accompanied by the measurement
of axial light loss. The proposed approach can be potentially used with existing instru-
ments because it requires only the addition of a compact enhanced scatter detector. An
analytical model of scatter of laser beams by individual bacterial cells suspended in a
fluid was used to determine the location of scatter sensors. Experimental results were
used to train the support vector machine-based pattern recognition system. It has been
shown that information provided just by five angles of scatter and axial light loss can
be sufficient to recognize various bacteria with 68–99% success rate. ' 2007 International

Society for Analytical Cytology
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LIGHT-SCATTER signal detection has been employed in flow cytometry almost from

the moment the method was introduced to practical use. Initially, scatter signal was

utilized to synchronize the fluorescence detectors with the flow of particles through

the flow chamber. Very soon it was demonstrated that information about forward

(28 � y1 � 208) and side (708 � y2 � 1108) scatter can be used to identify a number

of subpopulations of cells without the use of any additional information provided by

fluorescence stains (1–3). This was possible owing to the fact that forward-scattered

light in the small-angle region (y � 28) is primarily dependent on the cell size, and is

mostly independent of particle refractive index or shape (4–6), whereas perpendicu-

lar light scatter is sensitive to small internal structures in cells and to refractive index

changes. In the early days of flow cytometry there had been also some reports pub-

lished on the use of axial light loss, which was employed for cell sizing (7).

1Purdue University Cytometry
Laboratories, Bindley Bioscience Center,
Purdue University, West Lafayette,
Indiana 47907
2School of Mechanical Engineering,
Purdue University, West Lafayette,
Indiana 47907
3Molecular Food Microbiology
Laboratory, Department of Food
Science, Purdue University, West
Lafayette, Indiana 47907
4Cellular Analysis Technology Center,
Beckman-Coulter, Inc., Miami, Florida
33196

Received 29 August 2007; Accepted 16
November 2007

*Correspondence to: Bartek Rajwa,
Purdue University Cytometry
Laboratories, Bindley Bioscience
Center, Purdue University, 1203 W. State
Street, West Lafayette, IN 47907, USA.

Email: brajwa@purdue.edu

Published online 28 December 2007 in
Wiley InterScience (www.interscience.
wiley.com)

DOI: 10.1002/cyto.a.20515

© 2007 International Society for
Analytical Cytology

Original Article

Cytometry Part A � 73A: 369�379, 2008



Flow cytometrists agree that full scatter patterns of biopar-

ticles may contain much more information than what forward

scatter, perpendicular (side) scatter, and extinction can reveal.

When a cell passing through the flow chamber is illuminated, a

very complex spatial pattern is formed that is dependent on cell

size, shape, refraction index, density, morphology, and orienta-

tion of the cell relative to direction of incident beam. Therefore,

many researchers investigated the possibility of collecting more

than just two angles of scatter simultaneously. Meyer et al. (8)

postulated that single cells could be comprehensively character-

ized in flow systems using multiangle scatter detectors utilizing

32 channels in a fashion similar to the observation of scatter

patterns of single cells in microscopy-based systems.

Despite technical difficulties there were indeed several

reports published in the 1970s and early 1980s on complex

applications of scatter detection in flow, such as label-free

detection of morphological changes inside the cell. Some of

the reported systems involved detection of the full 1808 or

3608 scatter patterns from single biological cells (1,9–11).

The largest body of work on scatter in flow cytometry

was performed in the 1970s by a group of researchers at Los

Alamos National Labs (12–14). Their custom-built flow cyt-

ometers capable of multiangle scatter measurement were

interfaced to DEC minicomputers for data processing. Several

of these instruments were delivered to the NIH, but sadly

none of the multiangle scatter detectors designed in Los

Alamos found its way to commercial systems.

Owing to the immense progress in fluorescent label devel-

opment, multiparameter flow cytometry moved in the last

decade in the direction of adding more fluorescence detectors,

rather than enhancing scatter measurements. Twelve-color

machines are currently commercially available, and reports

have been published on 16-color flow cytometry analysis.

Multiangle scatter systems designed in the 1970s and 1980s

failed to make a substantial impact on the field. Currently,

only a few research groups still actively investigate applications

of multiangle light-scatter analysis in flow (15–19). However,

the published concepts usually require sophisticated, unique

custom-built flow cytometers and cannot be applied to the

existing instruments.

The presented work demonstrates application of pattern

recognition techniques to classification of microbial particles

on the basis of their discrete scatter patterns collected at five

selected angles and accompanied by the measurement of axial

light loss. Our approach differs from previous reports by the

use of a discrete-dipole approximation (DDA)-based analyti-

cal model of laser-beam scatter by individual bacterial cells

suspended in a fluid to determine the optimal location of scat-

ter sensors. Most of the available cytometry literature related

to light-scatter measurements employed generalized Lorenz–

Mie theory to perform optical particle sizing using a model of

light scattering by a sphere irradiated by a laser beam having a

Gaussian intensity distribution. In contrast, the DDA method

can be applied to nonhomogenous particles of arbitrary ge-

ometry, which makes it especially well suited for modeling

scatter response of nonspherical cells, such as rod-shaped bac-

teria (20–22).

Our approach can be used with existing instruments and

requires only minor modifications and the addition of a com-

pact custom-built scatter detector. In contrast to other reports

that describe direct use of collected scatter signals to character-

ize bioparticles, our method works in concert with a machine

learning system. The experimental results obtained from the

known samples are used to train the support vector machine

(SVM), and subsequently the samples containing mixture of

unknown particles are classified by the trained algorithm. This

report shows that information provided by just six scatter-

related parameters is sufficient for a trained system to recog-

nize various bacteria with a 69–99% success rate.

MATERIALS AND METHODS

Flow Cytometry

All the analyses were performed with a Cytomics FC500

flow cytometer (Beckman-Coulter, Miami, FL) equipped with

a 488-nm air-cooled argon laser. A prototype of an enhanced

scatter detection system (courtesy of Beckman-Coulter) capa-

ble of measuring forward-scatter signals at four different

angles was added to the above flow cytometer, replacing the

traditional forward scatter detector. This scatter measurement

system consists of four ring detectors and an axial light-loss

(extinction cross section) detector that can be moved toward

or away from the laser beam-particle intersection point to

change the angles of measurement (Fig. 1). Therefore, the four

angles of detection in each experiment cannot be chosen inde-

pendently because the four rings in the detector are fixed with

respect to each other. The number of the uniformly spaced op-

tical fibers in each ring varies linearly with its radius (12–34

per ring) to correct for variation of solid angle. The scatter

measurements from each ring detector are amplified by differ-

ent sets of pre-amplifiers and amplifiers to collect the 10-bit

linear data. Discrimination of doublets from single particles is

achieved by plotting forward-angle light-scatter integral versus

peak intensity and gating on single-particle signals. The CXP

software (Beckman-Coulter, Miami, FL) was used to acquire

the data on the flow cytometer.

Figure 1. A simple schematics of the optical setup. [Color figure

can be viewed in the online issue, which is available at www.

interscience.wiley.com.]
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Bacterial Cultures

Four different nonpathogenic bacterial cultures of vary-

ing size and shape were selected for the experiments: Esche-

richia coli K12, Listeria innocua F4248, Bacillus subtilis ATCC

6633, and Enterococcus faecalis CG110. The cultures were

grown in brain heart infusion (BHI) broth for 16–18 h at

378C, 140 rpm in a shaker incubator. The cultures were

washed once by centrifuging 5 min at 3,000 rpm and re-

suspended in sterile phosphate buffered saline (PBS), pH

7.6, before analysis. All the bacterial cultures were obtained

from the Purdue Department of Food Science culture collec-

tion.

Analytical Model of Scatter

The mathematical model of scatter used in this work

assumes that the particles are in isolation in the sheath fluid

(n 5 1.33), and the angular scatter distribution is calculated

and integrated over the area of the forward-scatter detector

placed outside the sheath fluid. This assumption is valid if the

particles are much smaller than the channel and if the laser

beam (10 mm3 80 mm Gaussian) inside the channel is consid-

erably larger than the particle. These assumptions are indeed

valid in the analyzed case. Because a flow channel with square

cross section was used and the dimension of the laser beam

was smaller than the width of the channel (250 mm), the

changes in dimension and intensity (\4%) of the laser beam

due to refraction at the surface of the channel are negligible

(unlike the case in cylindrical channels). The bacterial cells

were modeled as homogeneous particles using the DDA

method (20–22).

The DDA method was first formulated by Purcell and

Pennypacker (23), who used it to study interstellar dust grains,

and later extended by other researchers such as Draine, and

Taubenblatt and Tran (24,25). In DDA an arbitrarily shaped

particle is treated as a three-dimensional assembly of dipoles

(j 5 1, . . . ,N) on a cubic grid, located at positions rj (26).

Each dipole is assigned a complex polarizability aI, which can

be computed from the complex refractive index of the bulk

material and the number of dipoles in a unit volume. The

dipole moment or polarization at each dipole is related to the

electric field by Pj 5 ajEtot,j, where Pj is the dipole moment at

the dipole j, and Etot,j is the total electric field at dipole j, at rj.

Following the notation of Ref. (27), the field Etot,j at each

dipole can be decomposed into the electrical field incident

upon the features and the electric field contribution from the

other interacting dipoles. Hence, the electric field can then be

represented as Etot,j 5 Einc,j 1 Edipole,j, where Edipole,j is the

electric field contribution from the other N–1 dipoles, and

Einc,j is the known incident field E0exp(ik�ri 2 ixt). Therefore,
Edipole,j can be expressed as:

Edipole;j ¼ Einc;j �
X
k 6¼j

AjkPk; ð1Þ

where AjkPk is the electric field at rj due to dipole Pk. Each

element Ajk is a 33 3 matrix:

Ajk ¼ expðikrjkÞ
rjk

3 k2ðr̂jk r̂jk � 13Þ þ ikrjk � 1

r2jk
ð3r̂jk r̂jk � 13Þ

" #
; j 6¼ k; ð2Þ

where k : x/c, rjk 5 |rj 2 rk|, r̂jk : (rj 2 rk)/rjk, and 13 is a

3 3 3 identity matrix. With Ajj : aj
21, the scattering problem

is reduced to finding polarizations Pj that satisfy a system of

equations:

XN
k¼1

AjkPk ¼ Einc;j : ð3Þ

These equations can be solved by iterations. By introducing

the Green function, the method produces reliable results for

extremely rough discretization grids such as 2.22 meshes per

wavelength (26). In the presented study the quasi-minimal re-

sidual method has been used to solve the problem. Owing to

the characteristics of the coefficient matrix, the convergence

towards an accurate answer is dependent on scattering feature

size and refractive index.

Light-scatter signal from four different bacteria species

was modeled: E. coli, L. innocua, B. subtilis, and E. faecalis.

E. coli, L. innocua, and B. subtilis are rod-shaped bacteria,

whereas E. faecalis appears as cocci in chains. The size of

E. coli depends on the growth phase, and the nutrients avail-

able in the medium. E. coli bacilli can be up to 1.5 mm wide

and 2.0–6.0 mm long (28). For the purpose of modeling we

assumed that E. coli cells are typically 2 mm in length and

about 1 mm in diameter. L. innocua cells were modeled as

rods, �2 mm in length, and �0.6 mm in width (29). B. subtilis

forms long rods with oval endospores. The dimensions for our

model were based on direct observation under a phase-con-

trast light microscope (Leica Microsystems, Bannockburn, IL):

the average size of the vegetative cell was 4.3 mm 3 0.54 mm
and the endospores measured about 0.8 mm 3 0.5 mm. Typi-

cally, the volume of the B. subtilis cells increases by as much as

4% when spores are formed, whereas the refractive index

decreases from 1.51 to 1.39 (30). E. faecalis forms oval cocci

elongated in the direction of the chain, mostly in pairs and

short chains, with each coccus measuring about 1.38 mm long.

The refractive indices of vegetative cells of all these bacteria

vary from 1.4 to 1.5 (30,31).

The obtained results are valid for forward angles. The

effects of internal nonhomogeneity that affect the light scat-

ter at large angles can be ignored in this study. Because the

cells are much smaller than the incident laser beam, an inci-

dent uniform plane wave is assumed. The numerical model

described in this report assumes a nominal effective refrac-

tive index of 1.394. The angular variation of scatter has been

corrected for refraction of the scattered partial waves across

the flow cell on the way to the detectors, and the longer axes

of the bacteria were assumed to be aligned with the axis of

flow owing to the hydrodynamic forces in a flow cytometer.

Because polarization changes the scattering cross section
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noticeably, especially for long rod-like particles, the em-

ployed model takes into account incident laser beam polari-

zation (Ex/Ey 5 0.33).

Machine Learning Tools

Among various machine learning tools tested for classifi-

cation of scatter features of individual bacteria, SVM-based

algorithms were especially promising (32–34). SVM algo-

rithms allow for nonlinear decision boundaries in the input

space. SVMs are based on the concept of decision hyperplanes

that define decision boundaries. A decision hyperplane is one

that separates a set of objects having different class member-

ships. SVMs are able to construct hyperplanes in a multidi-

mensional space that separates cases of different class labels.

An optimal decision hyperplane is here defined as the linear

decision function with maximal margin between the vectors of

the two classes. It has been demonstrated that to construct

such hyperplanes one has to take into account only a small

amount of the training data, the so-called support vectors,

which determine this margin (33). For w0 � z 1 b0 5 0 | w [
RN, b [ R, which is the optimal hyperplane, it has been shown

that the weights w0 can be expressed as linear combination of

support vectors:

w0 ¼
X

support vectors

aizi ð4Þ

Therefore, the linear decision function I(z) will be in the

form of

IðzÞ ¼ sign
X

support vectors

aizi � zþ b0

 !
ð5Þ

where zi � z is the dot-product between support vectors zi and

vector z in feature space. SVM is a linear classifier in the pa-

rameter space, but it is easily extended to a nonlinear classifier

by mapping the space S 5 {x} of the input data into a high-

dimensional (possibly infinite-dimensional) feature space F 5
{/(x)} (see Fig. 2). If one chooses an adequate mapping /, the
data points become linearly separable or mostly linearly sepa-

rable in the high-dimensional space, so that one can easily

apply the structure risk minimization (35). To avoid working

in the potentially high-dimensional space F, one tries to pick a

feature space in which the dot product can be evaluated

directly using a nonlinear function in input space, i.e. by

means of the kernel trick: j(x1, x2) 5 h/(x1), /(x2)i. There-
fore, instead of making a nonlinear transformation of the

input vectors followed by dot-products with support vectors

in feature space, one can first compare two vectors in input

space, and then make a nonlinear transformation of the value

of the result (33). A kernel can be also understood as a similar-

ity measure between two observations. A large value for

j(x1,x2) indicates similar points, where smaller values indicate

dissimilar points. Typical kernels include the linear kernel,

j(x1, x2) 5 x1
T x2, the polynomial kernel, j(x1,x2) 5 (x1

T x2
1 1)d, or the RBF kernel, j(x1, x2) 5 exp(2gkx1 2 x2k2). It
has been shown that all these kernels are functions of dot pro-

ducts (36).

Supervised classification performed in this report used an

implementation SVM-based algorithm by Chih-Chung Chang

and Chih-Jen Lin (37–39) All the plots, including the exam-

Figure 2. The toy XOR problem demonstrates the concept of mapping the features to higher dimensionality to find a linear separation.

The red points (class 1) and green points (class 2) cannot be separated by a linear function in the feature space (left plot). However, a sim-

ple mapping to a higher dimension allows linear separation (right plot). The classes can be mapped to a six-dimensional space: 1, H2X,
H2Y, H2XY, X2, Y2, where the optimal separation hyperplane is XY 5 0. [Color figure can be viewed in the online issue, which is available

at www.interscience.wiley.com.]
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ples of the SVM decision boundaries, were prepared using R, a

free software environment for statistical computing and gra-

phics (40).

RESULTS

Calculation of Distinguishability Factor

Light-scatter patterns created by cells belonging to four

different bacterial species, L. innocua, B. subtilis, E. coli, and

E. faecalis, were modeled using the DDA method. Flow cyto-

metry measurements of traditional forward- and side-scatter

signals, as well as multiangle scatter measurements, have been

performed using actual samples of E. coli K12, L. innocua

F4248, B. subtilis ATCC 6633, and E. faecalis CG110.

The employed model of scattering by bacteria with a

nominal refractive index predicts scatter intensities at angles

varying from 0 to 308. The predictions of angular scatter in-

tensity are shown in Figure 3 (averaged over all F for each

ring). The plotted differential scattering cross section is inde-

pendent of the distance between the detector and the sample,

and is used to select the angles for maximum discrimination

of the bacteria.

The analytical model of the bacteria with a nominal re-

fractive index and size allowed us to find the optimal location

for the scatter detectors for effective classification. The proper

placement of the detectors was determined by the value of dis-

tinguishability factor D, defined as the ratio of the difference

in scattering cross section to the sum of scattering cross sec-

tion of two different bacteria:

D ¼
X
u

h
ðdCsci � dCscjÞ=ðdCsci þ dCscjÞ

i
; ð6Þ

where i,j represent different bacterial species, and y is the angle

of light scatter.

The idea of calculating the D factor can be easily derived

from an analysis of Figure 3. One can easily see that the angles

represented by light-gray lines (nominal 7.8, 11.3, 17, and

22.58—Set I) are better than the angles highlighted by dark-

gray lines (4, 5.8, 8.7, and 11.58—Set II) for distinguishing all

the analyzed two-component mixtures of bacteria. These sets

of angles can in practice be translated to different positions of

the multi-angle scatter detector. The distinguishabilities for

the two analyzed sets are presented in Table 1.

The data showed that the ability to distinguish between

the analyzed bacterial species decreased when the multiangle

detector was placed too close to the flow chamber, effectively

collecting signals from larger angles of scatter. L. innocua was

an exception from this finding.

Although this estimate ignores the variation of scatter sig-

nals within each population due to intra-species differences in

size and refractive indices, it gave a qualitative approximation

of the expected outcome of the alternative measurement

scenarios.

The difference in refractive indices and cell sizes results in

dispersion of each bacterial species population in the light-

scatter measurement space. Therefore, the experimental data

have not been directly classified using the output of a model,

but rather processed employing a machine learning system.

Predicted Classification Success

To predict the feasible classification, the variability in

scatter signal owing to differences in refractive index and sizes

of individual particles had to be considered. Hence, a normal

distribution of sizes and refractive indices was employed in the

enhanced model calculated for three species of bacteria (L.

innocua, E. faecalis, and E. coli). The 1/e width of the normal

distribution of refractive index was 0.033 with a mean (m) of
1.394. The standard deviation of the refractive index was

assumed to be approximately 2%. Similarly, the standard

Figure 3. The nominal variation of differential scattering cross

section (dCsc/dx) with forward angle for the four bacteria species.
Set I��7.8, 11.3, 17, and 22.58; Set II��4, 5.8, 8.7, and 11.58. [Color
figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]

Table 1. Distinguishabilities calculated for scattermeasurement at nominal 7.8, 11.3, 17, and 22.58 (Set I), and 4, 5.8, 8.7, and 11.58 (Set II)

E. COLI L. INNOCUA B. SUBTILIS E. FAECALIS

I II I II I II I II

E. coli 1.88 2.82 2.15 1.49 1.34 0.67

L. innocua 1.88 2.82 2.11 1.79 2.42 3.12

B. subtilis 2.15 1.49 2.11 1.79 2.25 2.01

E. faecalis 1.34 0.67 2.42 3.12 2.25 2.01
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deviation in volume of the bacteria was assumed to be 5%.

This increase in volume was modeled by corresponding isotro-

pic changes in the dimensions of the bacteria. The modeled

populations of each bacterial species were divided into 91 sub-

groups (13 different values of refractive index by 7 values vol-

ume, both varying from m 2 3r to m 1 3r) and mapped onto

the four-dimensional measurement space of the two investi-

gated angle sets. The modeled bacterial populations were used

to calculate theoretical scatter signals using the DDA approach

as described before. Once scatter intensities of each subgroup

were computed, the results were weighted by the population

density (w) using the equation

wij ¼
Z

subgroup

1

rn

ffiffiffiffiffi
2p

p exp �ðni � n0Þ2
2r2

n

 !
1

rV

ffiffiffiffiffi
2p

p

3 exp �ðVi � V0Þ2
2r2

V

 !
; ð7Þ

where ni and Vi are the refractive index and volume of the ij-

th subgroup, n0 and ri are the mean and the standard devia-

tion of refractive index, V0 and rV are the mean and the stand-

ard deviation of bacterial cell volume.

The overlap of weighted resultant values calculated for

every pair of bacterial species in the measurement space was

used as an estimate of the possible classification error, for ev-

ery two-class case. Because the model did not take the instru-

ment noise into account, these values were expected to give an

approximate upper bound of the feasible classification success.

In Silico Analysis of Flow Cytometry Experiments

Samples containing the pure bacterial suspensions were

run in sequence but separately on the modified Beckman-

Coulter FC500 flow cytometer. Subsequently, the datasets were

electronically mixed, and a parameter representing the ground

truth was added to the dataset. This parameter was used to

verify the results of automated classification.

The collected scatter signals at the four forward angles

established by the numerical analysis study, a parameter repre-

senting sum of all the forward-scatter intensities, side-scatter,

and axial light loss measures for each particle from every

group of bacteria formed multidimensional data vectors

describing the analyzed bioparticles. Visual examination of

plots representing measurements of forward- and side-scatter

signals could not distinguish between the microbial particles

of E. coli K12, L. innocua F4248, B. subtilis ATCC 6633, and

Figure 4. Matrix of scatter plots representing multiangle scatter measurement of B. subtilis (red dots) and E. faecalis samples (green dots).
For clarity, only 1,000 events were plotted. FS14, four forward-scatter measurements; LL, axial light loss; SS, side scatter. B. subtilis
��orange dots, E. faecalis��blue dots. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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E. faecalis CG110 in any of the experiments. An example is

demonstrated in Figure 4, where samples containing particles

of E. faecalis and B. subtilis are represented on a scatter-plot

matrix. Partial or complete overlap of the two populations in

the parametric space is evident.

The classification problem was then to determine the type

(species) of every analyzed particle on the basis of its multidi-

mensional data vectors. The unsupervised dimensionality

reduction approach employing linear and kernel principal

component analysis using radial basis function (PCA, kPCA),

independent component analysis (ICA), as well as factor analy-

sis (FA) have not resulted in separable populations (see an

example in Fig. 5). Attempted supervised classification using

linear discriminant analysis (LDA) also failed, producing

results with error rates above 35% (Fig. 6) in all the cases tested.

In contrast to LDA, SVM is usually capable of solving

complex classification problems which do not have simple lin-

ear (or quadratic) solution in the parametric space (Fig. 2).

Therefore, supervised classification was performed using an

SVM-based approach. A radial-basis function kernel j(x1,x2) 5
exp(2gkx1 2 x2k2) was used for all the classification. The

optimal type of kernel was established experimentally. The

SVM complexity parameter as well as the g kernel parameter

was found by an extensive grid search evaluating every pair of

parameters by re-training and cross-validation.

The 5 3 2 cross-validation and bootstrap algorithms

were used to determine the classification success of the opti-

mal SVM. The accuracy of classification computed using

cross-validation is summarized in Table 2. An example of a

complicated decision boundary (a hyperplane in n dimen-

sions, where n is the number of parameters) determined by a

typical SVM training applied to a scattered-light dataset is

illustrated in Figure 7.

DISCUSSION AND FUTURE RESEARCH

Although light-scatter signatures of cells have been uti-

lized in microbiological applications of flow cytometry, the

role of scattered light was secondary at best. It was the growing

availability of fluorescence-labeled antibodies to specific anti-

gens that made possible the use of flow cytometry to directly

detect the presence of pathogens. Cytometry-based methods

have been employed to detect surface antigens in Haemophilus

(41), Salmonella (42,43), Mycobacterium (44), Brucella (45),

Branhamella catarrhalis (46), Mycoplasma fermentans (47),

Pseudomonas aeruginosa (48), Bacteroides fragilis (49,50),

Legionella (51), and other microorganisms (52). The main dis-

Figure 5. Example of dimensionality reduction techniques applied to the multiangle scatter data. (A) Principal component analysis, (B),

independent component analysis, (C), kernelized version of principal component analysis, (D), factor analysis. B. subtilis��orange dots,
E. faecalis��blue dots. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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advantages of label-dependent detection are the limited avail-

ability of antibodies directed against certain microorganisms,

and problems with fluorescence detection multiplexing.

Although scatter signals have been routinely collected during

flow cytometry measurements of bacterial populations, classi-

fication of live microorganisms on the basis of scatter signal

alone measured in a commercially available flow system has

not been reported.

Since the pioneering experiments by Salzmann et al., (9)

it has been demonstrated in numerous reports that label-free

measurements and classification of bioparticles in flow cyto-

metry is feasible. The major obstacles for the wider implemen-

tation of the multiangle scatter systems were the complexity of

the design and the lack of easy-to-use tools for data analysis.

Although the system reported in this manuscript uses an

enhanced detector, the number of simultaneously measured

angles is relatively low, and detector installation does not

require extensive modifications to the flow cytometry hard-

ware. Instead of focusing on the increase of the number of

scatter angles the proposed approach requires pre-selecting

angles which are likely to offer high distinguishability for the

bioparticles of interest. This is a strength of our design, but

also a weakness, since the system can be optimally set up only

for a given (and known) type of bioparticle. Consequently, the

system as proposed cannot be used for purely exploratory flow

cytometry, in which the characteristics of the analyzed biopar-

ticles are completely unknown. However, if control samples

are available, and particles whose presence has to be deter-

mined (or which have to be enumerated) can be characterized

in terms of their scatter properties, there is a good chance that

a system can be tuned to accommodate such a specialized

measurement. Alternatively, one may locate the optimal posi-

tion of the detector (and consequently, the collected scatter

angles), simply by trial and error, where results obtained from

controls are electronically mixed, and classified with a

machine-learning system, using cross-validation to determine

the optimal angles. The current prototype used for demon-

stration of the proof of concept allows for only two positions

of the detectors, but there is absolutely no technical reason

why multiple positions along the z-axis and consequently mul-

tiple sets of angles could not available.

Comparison of the classification success obtained experi-

mentally to the distinguishabilities estimated from the simple

scatter model shows high level of agreement except for two of

the six classification cases for each set of angles. This is

encouraging considering the fact that the intra-population

variance in size and refractive indices has not been accounted

for in the first model. It should also be noted that the pre-

dicted high classification rates for L. innocua and E. faecalis

mixture measured with the second configuration (48, 5.88, 8.78,
and 11.58), do not match the experimental results (Table 3).

We suspect that the reason for this discrepancy is the high

variance in dimensions and refractive index of bacteria.

The upper bound of classification success estimated with

the help of the enhanced model for turned out to be valid,

although over-optimistic. The real classification success dif-

fered from the estimated by 1–10%. However, we still consider

the model to have high predictive power since only in one of

the analyzed cases (B. subtilis vs. L. innocua) was the predicted

classification rate lower than the real accuracy (Table 2). This

Figure 6. Linear discriminant score plot illustrating inability to

achieve separation between data vectors describing B. subtilis
(orange dots) and E. faecalis (blue dots). Events indexed from 1 to

500 should be placed above the y 5 0 function, whereas all the

events from 500 to 1000 should score below 0. However, owing to

misclassification a large portion of dots representing B. subtilis is
placed above y 5 0 discriminant function. Conversely, a large

group of E. faecalis cells was misclassified as B. subtilis. [Color
figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]

Table 2. Average classification success rates for 6-parameter (7.8, 11.3, 17.7, 22.5, 908, and axial light loss) scatter system employing

SVM classifier

E. COLI L. INNOCUA B. SUBTILIS E. FAECALIS

R (%) E (%) R (%) E (%) R (%) E (%) R (%) E (%)

E. coli – – 86.30 95.8 99.10 100 68.70 77.1

L. innocua 86.30 95.8 – – 99.60 98 81.60 95.6

B. subtilis 99.10 100 99.60 98 – – 98.50 100

E. faecalis 68.70 77.1 81.60 95.6 98.50 100 – –

R, real (measured) classification accuracy; E, estimated classification accuracy.
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shows that the simulated upper bound can be used to deter-

mine a priori whether a certain type of analysis and classifica-

tion is feasible in the given system. For instance, if the simu-

lated upper bound is on the level of 65–70%, any attempt for

successful classification will be most likely futile regardless of

the quality of the sample and stability of the lasers.

In the presented report the scatter simulation employing

state-of-the art techniques such as DDA allowed us to utilize

optimally the multiangle detector. However, owing to high bi-

ological variability of the real samples containing microorgan-

isms we have not employed scatter simulation for the purpose

of the actual particle classification. Instead, a machine-learn-

ing system was used.

Machine-learning and pattern recognition systems have

been applied to flow cytometry by a number of researchers in

fields such as marine biology (53,54), hematology and immu-

nology (55,56), and microbiology (57,58). Among the pro-

posed methods were LDA, neural networks, and SVM (59).

However, we are not aware of any application of these techni-

ques to label-free bacteria classification. Another aspect of this

Figure 7. Examples of cross sections through decision boundaries of SVM-based pattern-recognition system. Filled points represent

regular data vectors, empty points represent support vectors. Values of the variables not represented on the 2D plots were set to their

medians. B. subtilis��orange points, E. faecalis��blue points. [Color figure can be viewed in the online issue, which is available at www.
interscience.wiley.com.]
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work is a combination of simulation-based pre-selection of

features with a machine-learning system. The premise of this

approach is two-fold. Firstly, the smaller number of parame-

ters to collect simplifies the design of the detector, making it

pluggable to older hardware. Secondly, overwhelming a

machine-learning system with nonrelevant features may de-

grade the performance of classifiers. Naturally, employing a

feature selection procedure is an answer to the problem of a

huge number of features. However, this solution comes at sig-

nificant computational cost, and ultimately it may be difficult

to implement, especially if a real-time analysis or fast analysis

and classification is desirable.

Use of SVM allowed for high classification accuracy and

eliminated the need for gating. Manual gating can be per-

formed easily if analyzed parameters are orthogonal. However,

intensity of light collected by scatter detectors cannot be

orthogonalized via compensation as in the case of fluorescence

measurements. Therefore, other methods of classification had

to be explored. PCA, kPCA, ICA, and FA failed to separate the

analyzed populations. A simple linear discrimination

approach was also unable to perform in a satisfactory manner.

However, supervised classification employing a kernel

approach, such as SVM, produced a remarkably high success

rate (Table 2). Unfortunately, SVM results cannot be easily

interpreted if the dimensionality of the problem is higher than

2 (compare Fig. 2 with Fig. 7). This may be a serious problem

for many practitioners in the field who expect that despite the

growth in the number of available variables, some simple

graphical model of data analysis would still be employed.

Therefore, one of the most important aspects of multiangle

scatter studies should be a search for innovative data visualiza-

tion tools, allowing for meaningful dimensionality reduction

and easy exploratory gating.
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