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Summary

Modern microscopy methods require efficient image
compression techniques owing to collection of up to thousands
of images per experiment. Current irreversible techniques
such as JPEG and JPEG2000 are not optimized to preserve
the integrity of the scientific data as required by 21 CFR
part 11. Therefore, to construct an irreversible, yet integrity-
preserving compression mechanism, we establish a model of
noise as a function of signal in our imaging system. The
noise is then removed with a wavelet shrinkage algorithm
whose parameters are adapted to local image structure. We
ascertain the integrity of the denoised images by measuring
changes in spatial and intensity distributions of registered
light in the biological images and estimating changes of the
effective microscope MTF. We demonstrate that the proposed
denoising procedure leads to a decrease in image file size
when a reversible JPEG2000 coding is used and provides
better fidelity than irreversible JPEG and JPEG2000 at the
same compression ratio. We also demonstrate that denoising
reduces image artefacts when used as a pre-filtering step prior
to irreversible image coding.

Introduction

Digital imaging based on light microscopy has become an
established technique in basic and applied biological sciences.
Modern applications like high-content screening (HCS), 4D
imaging, and multi-spectral imaging may involve collection
of thousands of images in one experiment. Hence, such
data have to be stored using efficient image-compression
techniques. Several compression routines developed for digital
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photography and film may be used to address this issue.
Reversible compression algorithms (LZW, RLE, Huffman
encoding) neither introduce distortion to images (Bernas
et al., 2005b) nor remove any information from images and
therefore preserve the data integrity, as defined by 21 CFR
part 11 (CFR, 2004). However, these reversible (‘lossless’)
techniques can provide only a moderate compression ratio,
which typically does not exceed 3:1 for biological images. More
efficient compression can be obtained with irreversible (‘lossy’)
techniques, which use fractal coding (Chen, 1998; Wohlberg
& de Jager, 1999), vector quantization (Cosman et al., 1994;
Chen, 1998), discrete cosine transform (ISO/IEC, 1999) or
wavelet transform (ISO/IEC, 2002). The last two compression
schemes, described by JPEG (ISO/IEC, 1999) and JPEG2000
(ISO/IEC, 2002) standards, are the usual choice in biological
microscopy owing to their widespread implementation.
However, these forms of irreversible compression remove
some information from images and introduce artefacts. The
distortions are considered acceptable as long as the essential
perceptual image quality is not decreased (Grgic et al., 2003;
Ebrahimi et al., 2004). In other words, models of human vision
are used to establish which image features are significant
and consequently should be preserved (Ebrahimi et al., 2004).
This approach is not particularly suitable for compression of
microscope images, if the data integrity is to be preserved.
Therefore, to meet the requirements of 21 CFR part 11, one
needs to prove that irreversible compression does not alter the
outcome of analysis procedures that use images as the input
data. Several validation schemes have been developed for JPEG
and JPEG2000. A common approach is to establish whether
the compression ratio modifies ROCs (receiver operating
curves) for diagnosis based on medical images (Cosman et al.,
1994; Wong et al., 1995; Sung et al., 2002). However,
the process of interpretation of the images by a clinician
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is difficult to model and standardize (Cosman et al., 1994).
Therefore, this technique is expensive, time-consuming and
prone to ambiguity (Cosman et al., 1994; Wong et al.,
1995). Validation of compression algorithms is easier when
automated image analysis procedures are used, owing to
their reproducibility, low cost and speed. Nonetheless, the
acceptable compression level is task-dependent (Wong et al.,
1995), regardless of whether images are analyzed by a human
expert or an automated system. Furthermore, the compression
level may depend on image quality (Sung et al., 2002). This
parameter, in turn, depends on the image-registration system
and the properties of the imaged specimen. Consequently, it
may be necessary to re-validate an irreversible compression
scheme if any of the three components (imaging system,
interpretation/analysis procedure or task) is changed. These
problems may be obviated if an algorithm for compression of
microscope images is constructed without reference to human
vision models and validated in a way that is independent of
the image-analysis task.

Instead of studying the result of interpretation/analysis of
compressed images, one may focus on the information content
of the input data. The information content of a micrograph
is limited by the presence of instrumental noise, which
constitutes part of image data. Removal of this redundant noise
component is an obvious methods to decrease size of image
data (perform image compression). Numerous and efficient
schemes of removal signal-independent (Gaussian) noise with
wavelet shrinkage (thresholding) have been developed and
tested using several types of images (Donoho & Johnstone,
1994; Donoho, 1995; Simoncelli, 1999; Chang et al., 2000).
These have been also used to remove signal-independent
(Poisson) noise from images subjected to variance-stabilizing
transformation with a normal approximation (Donoho, 1993;
Fryzlewicz & Nason, 2001). Alternatively, one may adapt
wavelet shrinkage with original Poisson counts (Kolaczyk,
1997; Kolaczyk, 1999b; Nowak & Baraniuk, 1999) or
use Bayesian inference (Kolaczyk, 1999a; Timmermann &
Nowak, 1999) to remove this type of signal-independent
noise. Nonetheless, application of denoising for compression
of biological light micrographs has not been extensively
evaluated up to the author’s knowledge. One may note that,
in contrast to natural scene images, there are no established
universal measures of image quality.

Therefore, to establish an irreversible, yet data-preserving
compression mechanism, we use previously developed model
of noise, which is a function of signal in our imaging
system (Bernas et al., 2005a). Then, we implement an
unbiased Poisson noise estimator in wavelet domain (Nowak
& Baraniuk, 1999) and combine it with an adaptive
wavelet shrinkage scheme (Sendur & Selesnick, 2002). We
demonstrated previously that proposed denoising procedure
combined with reversible JPEG2000 coding results in a
decrease of microscope image (Bernas et al., 2006). In
this paper, we evaluate the effects of application of this

compression method on possible distortion of microscope
modulation transfer function (MTF) and actual biological
fluorescence micrographs. We compare fidelity of proposed
denoising/coding scheme to fidelity provided by irreversible
JPEG2000 and JPEG in the same conditions. We also study
fidelity of proposed denoising combined irreversible JPEG2000
coding.

Materials and methods

Computer software and hardware

Image processing and analysis procedures were executed
using an AMD Athlon XP 2800+ (1950 MHz) machine
equipped with 1 GB DDR RAM (333 MHz) and a RAID 0 matrix
comprising two ATA 133 hard drives. The calculations were
performed with Matlab R13 (MathWorks) running under MS
Windows 2000 (SP4).

Registration of microscope images and construction
of model images

Cell culture and confocal microscopy. Transformed human
fibroblasts MSU 1.1 were cultured, stained with propidium
iodide (PI) and imaged using a Bio-Rad MRC 1024 confocal
microscope as described previously (Bernas et al., 2004). PI
fluorescence was detected using photomultipliers in photon-
counting mode. The array test pattern on a microscope
test slide (Richardson Technologies Inc., Bolton, Canada)
was imaged using the same confocal system. The images
were registered at the focal plane of maximum intensity
using reflected light (488 nm) as described in Bernas et al.
(2006). Light intensity was registered with 8-bit precision.
The images were sampled close to Nyquist spatial frequency
(approximately seven image pixels corresponded to one Airy
disc diameter). Hence, according to Rayleigh criterion, one
could resolve two point objects if they were at least 3.5 pixels
apart.

Generation of model images of sinusoidal test patters. To test the
influence of irreversible compression schemes on the effective
modulation transfer of an optical microscope, sequences
of synthetic images (512 × 512 pixels, 8 bit) containing
vertical sinusoidal test patterns were generated (Fig. 1). A
sequence comprised the patterns characterized by the period
from 2 (T min) to 128 (T max) pixels. The minimum intensity
(amplitude) was set to 0, whereas the maximum intensity was
calculated for each pattern using the approximate formula for
microscope MTF (Stokseth, 1969):

Imax = Nmax × (1 − 0.69 f + 0.0076 f 2 + 0.04 f 3)2,

where

f = 2 ∗
(

1
T

− 1
Tmax

) (
1

Tmin
− 1

Tmax

)−1

, (1)
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Fig. 1. Influence of compression on the effective MFT in an imaging system where a high maximal number of photons (200) was registered. The MTF
was represented by a series of images of sinusoidal test patterns without noise (white bars), with Poisson noise (grey bars) or with Gaussian noise (black
bars). A negative contrast value indicates a decrease in the energy of a spatial frequency, whereas a positive contrast value indicates an increase of the
energy. The images were compressed using irreversible JPEG2000 (A and C) and JPEG (B and D), with a compression ratio of 6× (A and B) or 18×
(C and D).

where f is the normalized spatial frequency, T the spatial
period of the sinusoidal pattern, T min, T max the minimum (2)
and maximum (128) values of T, Nmax the maximum photon
number (50 or 200) and Imax the maximum intensity.

The calculations were performed using 64-bit numbers
(IEEE floating point), and the results (Imax) were rounded
to 8-bit integers. The maximum intensity (Imax) decreases
with increasing spatial frequency (decreasing spatial period).
Therefore, the image sequence represents the MTF of a
confocal microscope. Two such sequences were generated
with Nmax set to 50 or 200 to simulate images registered with
low and high photon numbers, respectively.

SNR estimation and image compression in wavelet domain

It has been demonstrated that the image-compression ratio
can be improved through a suitable denoising procedure
(Chang et al., 2000). The greatest part of the noise present

in microscope images is caused by inherent variation in the
arrival rate of photons owing to the quantum nature of light.
We demonstrated previously that the noise present in the
biological micrographs registered with our imaging system
is signal-dependent and may be adequately described using
Poisson model (Amer et al., 2002; Bernas et al., 2005a). Thus,
an unbiased Poisson noise estimator [described in Nowak &
Baraniuk (1999)] is combined with the bivariate wavelet-
shrinkage algorithm (Sendur & Selesnick, 2002) to perform
image denoising. Briefly, two forward wavelet transforms
(three decomposition levels) of images are calculated using
a bi-orthogonal 3.3 wavelet:

SI =
∑

k,l

wI (k, l)λ(k, l), (2)

where SI is the ith wavelet coefficient (signal), wI (k, l)
bi-orthogonal wavelet, λ(k, l) the image intensity, l and k
the image spatial coordinates.and squared bi-orthogonal 3.3
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wavelet:

σ 2
I =

∑
k,l

w2
I (k, l)λ(k, l), (3)

where σ 2
I is the noise variance associated with the ith wavelet

coefficient, w2
I (l, k) is the squared bi-orthogonal wavelet

as described in Nowak & Baraniuk (1999). This procedure
provides an unbiased estimate of noise calculated separately
for each wavelet coefficient. The original wavelet shrinkage
scheme described in Nowak & Baraniuk (1999) did not take
advantage of the fact that wavelet coefficients at different
resolution scales (but corresponding to the same image region)
are correlated. Hence, to exploit correlation between respective
detail coefficients at finer (child) and coarser (parent) scales,
wavelet shrinkage algorithm described in Sendur & Selesnick
(2002) was applied instead. Briefly, large child coefficients,
which do not correspond to large parent coefficients, are
likely to represent only noise and therefore are decreased. The
shrinkage procedure is constructed using the following set of
equations:

SI c = RI c

(
1 +

√
3σ 2

I c

δ2
c r

)
= RI c Fc

SI p = RI p

(
1 +

√
3σ 2

I p

δ2
pr

)
= RI c Fp ,

where

r =

√√√√(
RI c

δc

)2

+
(

RI p

δp

)2

and

δ2
c = 1

N2
c

∑
n∈C

S2
I n

δ2
p = 1

N2
p

∑
n∈P

S2
I n,

(4)

where SIc and SIp are the initial child and parent wavelet
coefficients, RIc and RIp, the resulting (shrunk) child and parent
wavelet coefficients, σ 2

I c and σ 2
I p, the child and parent noise

variances, δ2
c and δ2

p , the variances of distributions of wavelet
coefficients belonging to child (c) and parent (p) sub-bands and
Np and Nc the number of child and parent coefficients.

These equations cannot be solved in an analytical way to
give the wavelet shrinkage functions. Thus, the shrinkage is
executed in an iterative manner using an algorithm based on
(Sendur & Selesnick, 2002):
1. Initialize parameters:; k = 1, RIc

k = SIc, RIp
k = SIp

2. Calculate r, Fp and Fc using RIc
k, RIp

k

3. Find RIc
k+1, RIp

k+1 using RIc
k+1 = RIc

k/Fc and RIp
k+1 =

RIp
k/Fp

4. Calculate the absolute differences; εc = |RIc
k+1 − RIc

k|,
εp = |RIp

k+1 − RIp
k|

5. If εc < =1 and εp < =1, then set RIc = RIc
k and terminate;

otherwise set k = k+1, RIc
k = RIc

k−1, RIp
k = RIp

k−1 and go
to step 2

This procedure is executed with the wavelet coefficients at
first and second decomposition levels constituting the parent
and the child sub-bands, respectively. Following shrinkage, a
reverse wavelet transform is executed on SI:

λd = w−1 Sd (5)

where Sd is the denoised wavelet image representation, w−1

the inverse wavelet transform and λd the denoised image.
One should note that in original wavelet shrinkage

procedure described in Sendur & Selesnick (2002) was
constructed to remove only signal-independent (Gaussian)
noise. Therefore, to validate the proposed method, the signal
intensity was calculated as an average from the resulting
(denoised) images over the regions where the pixel value
was greater than 30. The absolute difference between the
denoised and initial images in these regions was used as an
estimate of the noise level and compared to a noise estimate
obtained with independent technique, as described in our
earlier papers (Bernas et al., 2005a; Bernas et al., 2006). We
demonstrated that change of pixel intensity introduced by the
proposed algorithm follows expected Poisson characteristics
with respect to dependence on remaining signal and the noise
magnitude (Bernas et al., 2005a; Bernas et al., 2006).

Wavelet compression and coding. Execution of the wavelet-
shrinkage algorithm results in zeroing of some wavelet
coefficients in the denoised image, as described earlier. The
zeroed coefficients represented noise modelled by Poisson
distribution. This information-preserving noise removal
constitutes the irreversible (‘lossy’) step of the compression
algorithm. This procedure is followed by reversible (‘lossless’)
image coding using a wavelet representation (format),
which is part of the JPEG2000 specification (ISO/IEC,
2002). Where indicated, irreversible JPEG2000 compression
was used. Both procedures were executed using JasPer
(http://www.ece.uvic.ca/∼mdadams/jasper/).

Estimation of image distortion in compression

Alteration of effective microscope MTF. The sequences of the
pattern images were compressed using JPEG or coded with
reversible or irreversible JPEG2000. The contrast between the
minima and maxima of these test patterns was calculated
as total difference between the image and its copy shifted
horizontally by the distance equal to the pattern period. The
contrast was then normalized to the value obtained for the
non-compressed counterparts of these pattern images using
the formula:

C n =

∑
i , j

|Icm(i , j ) − Icm(i + s, j )|
∑
i , j

|Inoc (i , j ) − Inoc (i + s, j )| − 1 (6)
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where Cn is the relative contrast, i and j are horizontal and
vertical pixel coordinates, s is the profile shift (equal to the half
of the spatial period) and I is the pixel intensity in compressed
(cm) and non-compressed (noc) images.

Similar calculations were performed on the sequences of
pattern images to which Poisson was added and on their
denoised counterparts. The normalized contrast was plotted
against the spatial frequency (inverse of the spatial period, T).
Note that the relative contrast was equal to zero if no artefacts
were introduced by a compression algorithm, negative when
a spatial frequency was attenuated and positive when the
frequency was enhanced.

Artefacts in microscope images of test specimens. Artefacts
introduced by image compression were estimated using a test
slide (Richardson Technologies) containing horizontal array
patterns, composed of bars 0.250 μm, 0.125 μm or 0.100
μm wide. Intensity profiles (3-pixel width) were measured
from images of the patterns registered with either a large or
a small number of photons. The normalized contrast between
the profile minima and maxima was calculated using Eq. 6
(with jc − 1 <= j <= jc + 1, where jc is the vertical coordinate
of the centre of the intensity profile).

Changes in fluorescence intensity distributions in biological images.
To establish whether compression introduced changes in the
total fluorescence intensity distributions, the ‘earth mover’s’
distance (EMD) algorithm (Rumner et al., 2000) was used to
compare image histograms between reference and compressed
images. Briefly, the minimal average (per pixel) intensity
change needed to transform histograms of a compressed image
into the respective histogram of an uncompressed (reference)
image was computed for every such image pair.

Alterations of spatial fluorescence distribution in biological
images. To verify whether compression produced local
intensity changes in spatial fluorescence distributions of
the nuclei in uncompressed and compressed images were
studied. The spatial distributions were compared using
texture parameters (features): grey-level co-occurrence
matrix (Haralick), gradient-based features, run-length matrix
parameters and wavelet energy. These parameters were
calculated using MaZda 3.2 (Materka & Strzelecki, 1998)
and are described in detail in Materka & Strzelecki (1998)
and Tuceryan et al. (1998). The grey-level co-occurrence
parameters were calculated at 1, 2, 3, 4 and 5-pixel
distance. The gradient-based features and run-length matrix
parameters were calculated at 45, 90 (vertical), 135 and 180
(horizontal) degrees. The wavelet energy was calculated at
first, second and third decomposition levels. Calculations were
performed in the areas where the fluorescence intensity was
higher than 30 (background) using 8 bits of dynamic range.
The texture parameters of images compressed using JPEG and
JPEG2000 (with and without denoising) were divided by the
respective values for their non-compressed counterparts. Two

sets of images (raw vs. denoised and coded with reversible
JPEG2000), each characterized with 275 normalized texture
parameters were subjected to step-wise discriminant analysis.
Wilk’s lambda was used to establish the parameters with the
highest discriminant power. The parameters were added to
and removed from the analysis set using probability of F (0.05
for entry and 0.10 for removal).

Results

Influence of irreversible compression schemes on the effective MTF
Effects of irreversible compression with JPEG and

JPEG2000 were analyzed using sequences of model images
containing sinusoidal patterns representing several spatial
frequencies. As expected, no distortions were generated
when noiseless (pattern) images were coded (2.5×
compression ratio) with reversible JPEG2000 (Figs 1(B)
& 2(B)). Only minor distortions were generated by irreversible
JPEG at the same compression ratio (Figs 1(A) & 2(A)).
However, enhancement of high spatial frequencies was
observed when images contaminated by Poisson noise were
compressed with JPEG or JPEG2000 (Figs 1(AB) & 2(AB)). One
should note that irreversible variant of the latter algorithm was
used to obtain the same compression ratio (2.5×). Removal
of the Poisson noise with the proposed denoising procedure
resulted in attenuation of the highest spatial frequencies
(Figs 1(AB) & 2(AB)). It should be noted that MTF distortion
was smaller when denoising was combined with reversible
JPEG2000 than when irreversible JPEG was used (compare
panels A and B in Figs 1 & 2). Moreover, both attenuation
and enhancement were less manifested in bright images
(higher number of photons and SNR) than in dark images
(lower number of photons and SNR, compare Figs 1 & 2,
panels AB).

High compression ratios (9×) resulted in a marked increase
of distortions (Figs 1(CD) & 2(CD)). Small enhancement of
certain spatial frequencies was observed in noiseless images
(one should note that only irreversible coding was used at
this stage). Compression of images containing Poisson noise
resulted in attenuation of some spatial frequencies, whereas
some were enhanced (Figs 1(CD) & 2(CD)). This effect was more
pronounced at high than at low frequencies. By contrast, no
enhancement but only attenuation of high spatial frequencies
was observed when noise was removed prior to coding
with irreversible JPEG2000 (Figs 1(CD) & 2(CD)). Similarly
to low compression ratio (2.5×) MTF distortions in highly
compressed (9×) images were more manifested at low number
of photons (low SNR) that at high number of photons (high
SNR). Furthermore, reversible JPEG2000 offered better fidelity
(lesser MTF distortion) than irreversible JPEG2000 (at the
same compression ratio).

In general, it may be concluded that irreversible image
compression produces alterations of effective microscope
MTF. The magnitude of distortions increases with spatial
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Fig. 2. Influence of compression on the effective MFT in an imaging system where a low maximal number of photons (50) was registered. The MTF was
represented by a series of images of sinusoidal test patterns without noise (white bars), with Poisson noise (grey bars) or with Gaussian noise (black bars).
A negative contrast value indicates a decrease in the energy of a spatial frequency, whereas a positive contrast value indicates an increase of the energy.
The images were compressed using irreversible JPEG2000 (A and C) and JPEG (B and D), with a compression ratio of 6× (A and B) or 18×(C and D).

frequency. The presence of Poisson noise aggravates the
problem, which becomes more severe as SNR decreases.
Removal of the noise with the proposed algorithm resulted
in a decrease in magnitude of distortions at the expense of
attenuation of the highest spatial frequencies. However, no
enhancement of spatial frequencies was observed in denoised
images. This notion suggests that the application denoising
results in removal of small image details (corresponding to
frequencies close to MTF cut-off) and prevents introduction
of image artefacts of similar size. Furthermore, one may
expect application of denoising would produce a decrease in
image file size. Therefore, denoising followed by JPEG2000
coding (either reversible or irreversible) seems optimal strategy
for compression of light micrographs. This strategy was
implemented and tested in practice of biological fluorescence
microscopy, as described in the next paragraphs.

Performance of wavelet-shrinkage followed by reversible (lossless)
JPEG2000 coding

Biological images. A set of fluorescence images of PI-stained
nuclei was denoised using the proposed algorithm (see
Materials and Methods) and compressed using the reversible
JPEG2000 encoding, as illustrated in an example in Fig. 3.
No gross artefacts were generated and efficient compression
was achieved. Presence of artefacts at compression ratios were
studied in detail using a set of 470 images containing varying
numbers of nuclei and characterized by different intensity
levels.

The compression ratios increased with decreasing
fluorescence intensity (data not shown). As expected, the
reversible JPEG2000 coding preceded by denoising exhibited
higher compression efficiency than the reversible JPEG2000
coding (the most efficient lossless compression method) alone
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Fig. 3. Effects of wavelet-based denoising (shrinkage) on a representative
image of a cell nucleus stained using propidium iodide (PI). File sizes of
the raw (A, saved as TIFF) and denoised (B, encoded using the reversible
JPEG200) images are shown in kilobytes (kb). Bar – 5 μm. The image is
reproduced from the Figure 4 presented in Bernas et al. (2006).

(Fig. 4). Detailed information on application this and similar
techniques for compression of biological micrographs were
published in previous papers (Bernas et al., 2005a; Bernas
et al., 2006).

The compressed images were compared quantitatively to
their uncompressed counterparts with respect to the intensity

Fig. 4. Overall compression efficiency of the reversible JPEG2000 with
(grey) and without (white) wavelet shrinkage. Data range indicated with
bars, 10th and 90th percentiles with boxes and median compression ratios
with vertical lines. The data are extracted from Figure 6 in Bernas et al.
(2006).

distribution (histogram). Average EMD (see Materials and
Methods) was equal to 1.18 ± 0.14 (see also Table 1), which
indicated that the denoising did not introduce gross changes
to histograms.

Possible changes in spatial fluorescence distribution within
cell nuclei were analyzed using the Haralick texture
parameters (entropy, sum of squares and difference variance)
and wavelet energy (first and second decomposition levels).
These features were chosen so as to provide the highest
discriminative power between sets of image compressed using
different algorithms (as discussed further, see also Materials
and Methods). The wavelet denoising resulted in only a slight
decrease of entropy (a measure of information, Fig. 5(A)).
The decrease was more pronounced at a 2- than at a 5-pixel
distance, which indicates that the finer (smaller than Rayleigh
resolution distance, see Materials and Methods) details were
affected more than the coarser (larger but close to Rayleigh
resolution distance) details. The sum of squares (a measure
of intensity distribution width) was slightly decreased by the
denoising at both distances (Fig. 5(B)). A larger decrease was
observed in the case of the difference variance (a measure of
contrast, Fig. 5(C)). One should note that the finer (2-pixel
distance) details were more affected than the coarser (5-pixel
distance). Effects of the denoising on the texture of cell nuclei
were studied using the wavelet energy coefficients at the first
(Fig. 6(A)) and second (Fig. 8(B)) decomposition levels. A
slight decrease in energy vertical (HL) and horizontal (LH)
spatial frequencies was observed at the second decomposition
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Table 1. Alterations of fluorescence intensity distributions (histograms) in irreversible compression, as measured using
EMD. Data are expressed as the average ± standard deviation.

Compression method Compression ratio: relative to reversible JPEG2000
with denoising and absolute median (in parentheses)

1 (2.5×) 3 (7.5×) 9 (22.5×)

JPEG2000 with denoising 1.18 ± 0.14 1.17 ± 0.16 1.19 ± 0.17
JPEG2000 without denoising 0.09 ± 0.02 0.15 ± 0.04 0.20 ± 0.10
JPEG 0.04 ± 0.01 0.17 ± 0.04 0.78 ± 0.13

level (Fig. 6(B)). This fact indicates that the 4-pixel details
were not affected in any significant degree. Greater decrease
was noted in the case of spatial frequencies between 2 and
4 pixels (Fig. 6(B), HH), at 2 pixels (Figs 6(A), HL and LH)
and higher (Figs 6(A), HH)). This notion indicates that details
smaller than Rayleigh resolution distance were removed by
the wavelet denoising procedure. The opposite effect occurred
when irreversible algorithms (JPEG2000 and JPEG) were used
(as discussed in the next section). One may conclude that the
wavelet shrinkage resulted in removal of noise, but did not
significantly affect the details of objects that could be resolved
using our imaging system. To validate this notion, we used a
microscope test slide containing an array pattern.

Microscope test patterns. Denoised images of an array grid
pattern were compared with their raw counterparts to
estimate the influence of wavelet shrinkage (wavelet-based
denoising) followed by reversible JPEG2000 encoding on the
reproduction fidelity of details of known size. The result was
quantified on the basis of contrast between the reflective
and transparent regions of the microscope test patterns
(see Materials and Methods), as shown in Fig. 7. Wavelet
shrinkage introduced a slight decrease of the contrast in the
images of the finest (0.100 μm, Fig. 7(A)) and a coarser
(0.125 μm, Fig. 7(B)) array grating. Compression with JPEG
and irreversible JPEG2000 (without denoising) resulted in an
increase of the contrast of the finest and coarser patterns.
The increase was prominent when images were registered
using a small number of photons (Fig. 7, grey bars) and
compressed using JPEG2000. Similar changes in contrast were
manifested at both short (one-bar length) and long pattern
shift (three-bar lengths, data not shown). The increase in
contrast indicates that the artefacts were introduced into the
whole pattern at regular intervals (i.e. they were periodic).
Both JPEG2000 variants (reversible and irreversible) exhibited
better reproduction fidelity of the coarser (0.125 μm) array
than of the finest (0.100 μm) grating. As expected, the best
fidelity for the two test patterns was achieved when wavelet
shrinkage was followed by JPEG2000. The coarsest pattern
(0.250 μm) was reproduced accurately by all the algorithms
(Fig. 7(C)), regardless of whether denoising was applied or not.
Similar data regarding application of this and other algorithms

for compression of test pattern images were also presented in
Bernas et al. (2006).

Performance of wavelet-shrinkage followed by irreversible (lossy)
JPEG2000 coding

The results presented in the previous section led us to
hypothesize that the wavelet denoising, implemented as a pre-
filtering step, may reduce artefacts generated by irreversible
compression schemes like JPEG2000. Hence, in order to verify
this notion, the set of fluorescence images of PI-stained nuclei
was denoised and subsequently encoded using the irreversible
JPEG2000. The effects of this procedure were compared with
compression using JPEG and JPEG2000 alone.

Biological images. Small values of the average EMD
(Table 1, see Materials and Methods) indicate that irreversible
compression with the ratios used did not introduce major
alterations in the image histograms. Interestingly, the largest
nominal changes were observed when wavelet denoising
was used. However, the average EMD was not affected
by the final compression ratio if the denoising step was
implemented. Hence, one may conclude that changes in the
histogram resulted from the noise removal, not the subsequent
irreversible coding. By contrast, average EMD increased
steadily with compression ratio when JPEG or irreversible
JPEG2000 was used without denoising (the increase is higher
for JPEG than JPEG2000). These facts indicate that in the
presence of noise, histogram distortions are introduced by
irreversible compression, and the magnitude of the distortions
depends on the compression ratio.

Changes in spatial fluorescence distribution in cell nuclei
were analyzed using the Haralick texture parameters, as
before. At the lowest (2.5×) compression level, wavelet
denoising resulted in a decrease in average relative values
of the sum of squares (Fig. 8(A), a measure of intensity
distribution width), the entropy (Fig. 8(D), a measure of
information) and the difference variance (Fig. 8(G), a measure
of contrast). The change of entropy was the smallest, whereas
that of sum of squares the largest of the three. One should note
that the decrease in the sum of squares and difference variance
was more pronounced at a 2-pixel distance than at a 5-pixel
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Fig. 5. Influence of wavelet denoising on textures in the images of PI-
stained nuclei, determined using Haralick parameters: entropy (A), sum
of squares (B) and difference variance (C). The parameters were calculated
at distances of 2 (black triangles) and 5 (grey triangles) pixels. For
clarity, only 10% of points (randomly chosen) are shown. The diagonals
(indicating unchanged parameters) are depicted with dark grey lines.

distance. Application of irreversible compression schemes
(JPEG and JPEG2000) without wavelet denoising resulted
in a small increase of the three texture parameters. This
effect was most pronounced for the difference variance (Fig.

8(G)). Furthermore, the increase of the difference variance was
greater at a 2-pixel distance than at a 5-pixel distance. This
observation indicates that small details (below the resolution
limit of the imaging system) may be enhanced in the images
compressed with JPEG and irreversible JPEG2000. At the
medium (7.5×) compression level, a greater increase in the
values of the texture parameters occurred when JPEG2000
without denoising was used (Fig. 8(BEH)). By contrast, when
JPEG was used, a decrease was observed. The highest (22.5×)
compression resulted in a marked decrease in the sum of
squares, the entropy and the difference variance regardless
of the algorithm used (Fig. 8(CFI)). One should note that
when wavelet denoising was used, the compression level
did not affect the magnitude of the decrease. By contrast,
when JPEG and irreversible JPEG2000 (without denoising)
were used, transitions from positive to negative values of
the texture parameters were observed. A similar pattern was
revealed when wavelet energy was used to analyze texture
of the nuclei. At the low compression level, the standard
methods (without denoising) caused a slight increase in the
wavelet energy corresponding to small (not resolvable) details
(Fig. 9(AB)). Greater enhancement was observed at medium
compression (Fig. 9(CD)). This effect was most prominent
for spatial frequencies between 2 and 4 pixels (Fig. 9(D),
HH), 2 pixels (Fig. 9(C), HL & LH) and higher than 2 pixels
(Fig. 9(C), HH). Use of the irreversible algorithms with the
highest compression rations resulted in a decrease in wavelet
energy of all but the lowest spatial frequencies (Fig. 9(F), HL &
LH bands). One should note that in the denoised images, the
textures of the nuclei were, in general, not influenced by the
compression level (Compare Fig. 9(AB)–(EF)). A change could
be detected only in the highest spatial frequencies in the images
compressed with the highest ratios (Fig. 9(E)). Thus, one may
conclude that JPEG and irreversible JPEG2000 compression
schemes introduced artefacts into images containing Poisson
noise. Furthermore, irreversible compression not preceded
by denoising might remove some image content, which is
not identified as noise. The resultant image distortion is a
net product of these two effects as illustrated in the Figs
10(C) and (D). The obtained results strongly suggest that the
proposed method of wavelet-based denoising helps preserve
data integrity in microscope images that are subsequently
compressed with irreversible JPEG2000. To validate this
notion, we again used the microscope test slide with an array
grid pattern.

Images of microscope test patterns compressed with irreversible
JPEG2000 coding. The procedure described for reversible
JPEG2000 coding (Fig. 7) was repeated using irreversible
JPEG2000 (with or without denoising) and JPEG. Compressed
images were compared with their raw counterparts to estimate
the fidelity of reproduction of details of known sizes. The
fidelity of reconstruction was quantified on the basis of
the contrast between reflective and transparent regions of
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Fig. 6. Influence of wavelet denoising on textures in the images of PI-stained nuclei, determined using wavelet (Haar) decomposition. The relative wavelet
energy was measured at first (A) and second (B) decomposition levels, following application of high-pass (H) and low-pass (L) filters in sequence.

the patterns (see Materials and Methods). Only slight changes
in the relative contrast of the finest (0.100 μm, Fig. 11(A))
pattern were observed at moderate compression ratio (7.5×).
However, an increase in the contrast of the coarser (0.125 μm,
Fig. 11(C)) pattern was observed in the images compressed
with JPEG2000 without denoising. JPEG2000 used with
a high compression ratio (approximately 22.5×) resulted
in a marked decrease in contrast of the fine and coarser
patterns registered with a small number of photons
(Figs 11(B) and (D), respectively). However, an increase in
the contrast was observer when JPEG was used. It was also
observed that high spatial frequencies (represented by the
fine and the coarser patterns) were significantly attenuated
at the highest compression level of JPEG (Figs 11(B) and (D),
respectively). This effect was emphasized when the number of
photons was low. Comparing results of compression at low
(Fig. 7), moderate (Fig. 11(ACE)) and high (Fig. 11(BDF))
ratios, it was observed that if JPEG or JPEG2000 is used
(both without the denoising step), high spatial frequencies
that were initially enhanced became attenuated as the ratio
increased. This observation indicates that periodic artefacts
were introduced at low compression levels. By contrast, if
wavelet denoising was applied before JPEG2000 encoding,
only continuous attenuation or no change was detected.
As expected, the distortions introduced by the irreversible
encoding were smaller in the case of denoised images than
in the case of original images.

Discussion

Current irreversible (‘lossy’) compression schemes are
optimized to preserve perceptual image quality. Consequently
an ‘information-preserving’ algorithm, as understood by
ACR/NEMA standard (National Electrical Manufacturers,
2004), retains all the significant information when it
is ‘visually lossless’. Efforts to meet this requirement
resulted in development of JPEG2000 to supersede the

older JPEG. Nonetheless, the latter is still the accepted
industry standard for irreversible compression of images
registered with light microscopy owing to its implementation
in numerous microscopy-related packages used by cell
biologists, pathologists, and microbiologists. Even though
perceptual image quality is not decreased (Grgic et al.,
2003; Ebrahimi et al., 2004), application of both JPEG
and irreversible JPEG2000 may cause detectable alterations
in image characteristics. We used synthetic images and a
microscope specimen comprising a periodic test pattern to
demonstrate that such distortions are reflected in the effective
MTF. Therefore, use of irreversible compression will affect
every kind of image data generated by biological microscopy.
The magnitude and type distortions were dependent on
compression ratio, spatial frequency and SNR. Although at
a low compression ratio, enhancement of the highest spatial
frequencies (transferred by a microscope) was observed, both
attenuation and enhancement of the frequencies in this range
were detectable when the ratio was high. Closer examination
of real microscope data revealed that in some image regions,
small image details were introduced, whereas in others details
of the same scale were removed. One may note that the former
effect corresponded to enhancement of high spatial frequencies
(high-pass filtering), whereas the latter to their attenuation
(low-pass filtering). It is not surprising that the distortions were
most pronounced when the number of registered photons (and
SNR) was low.

We demonstrated that the MTF distortions could be
mitigated if the noise was removed. Moreover, denoising
reduces the amount of memory required to encode an image
by discarding a part which can be proved not to carry
information on the imaged object. Therefore, this procedure
may assist the operation of standard compression algorithms
while preserving integrity of image data. We ascertained
that the proposed denoising method did not introduce any
artefacts to the images of periodic grating arrays. The
response of an imaging system to such patterns is an
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Fig. 7. Influence of irreversible compression on images of the array test
pattern registered with large (average of 72.8 per pixel, white bars) and
small (an average of 4.1 per pixel, dark bars) number of photons. The
fidelity of reproduction of the test pattern was estimated using relative
contrast between the bright and dark bars (see Materials and Methods).
The contrast was calculated shifting the pattern with respect to itself by
one bar width. The respective widths were 0.100 μm (A), 0.125 μm
(B) and 0.250 μm (C). The wavelet denoising followed by the reversible
JPEG2000 is shown with a slash pattern. Effects of compression (with
the same ratio as obtained using the denoising) using JPEG (backslash
pattern) and JPEG2000 (grid pattern) are shown for comparison. These
data were also presented in (Bernas et al., 2006) in Figs 8 and 9 (one
should note that data in this work are shown with offset of −1).

estimate of the MTF. The finest of the patterns (bar thickness
0.100 μm) was characterized by a spatial frequency of
5.0 μm−1, which was close to the microscope cut-off
frequency (5.7 μm−1). Therefore, it was concluded that
wavelet denoising does not impair the resolution of microscope
imaging. We validated this approach for biological images
using objective and human-independent measures of fidelity.
We demonstrated that wavelet shrinkage followed by lossless
JPEG2000 coding did not introduce significant changes to
the intensity distributions, as indicated by a small EMD
(comparable with the intensity resolution). Furthermore,
changes in texture of cell nuclei were consistent with removal
of sub-resolution details (which, by definition, represented
only noise).

Increase of compression ratio could be achieved by using
the wavelet denoising with irreversible JPEG2000. Such a
procedure did not prevent removal of fine details (represented
by high spatial frequencies). Nonetheless, when JPEG and
irreversible JPEG2000 (without denoising) were used to obtain
a similar compression ratio, both removal of image details and
introduction of artefacts were observed. The artefacts were
manifested by an increase in details close to resolution limit
(detectable with wavelet energy and Haralick parameters).
This effect became more prominent as the compression ratio
increased. By contrast, the increase of artefact formation
with the ratio was smaller when wavelet denoising was
used. This notion is confirmed by the fact that removal
of Poisson noise from synthetic MTF data and images of
periodic grating arrays prior to irreversible compression
resulted only in attenuation of the highest spatial frequencies
but prevented their enhancement. Therefore, the proposed
denoising technique may be applied not only to increase
the compression ratio of reversible coding methods but also
to pre-process images before compression by irreversible
algorithms. To our knowledge no similar analysis of influence
of irreversible compression of microscope data has been
presented by other workers.

It may be noted that images used in this work contained
cell nuclei characterized by relatively simple morphology
(in comparison to cytoskeleton or endoplasmatic reticulum).
In other words, the micrographs contained small number
of objects (features) close to resolution limit (according
to Rayleigh criterion). Therefore, one may postulate that
compression-induced loss of biological information present in
the micrographs could be greater if images comprised more
objects close to resolution limit (complex morphology). One
should note that the proposed denoising algorithm itself did
not generate artefacts of this size and prevented their formation
when irreversible coding was used. Instead, the denoising
resulted in attenuation of the highest spatial frequencies (acted
as a low-pass filter). However, two point sources positioned
at the distance equal to the lowest of the attenuated spatial
frequencies could not be resolved according to Rayleigh
criterion. Furthermore, it is likely that such spatial frequencies
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Fig. 8. Alteration of textures of PI-stained nuclei in images compressed with JPEG2000 (with and without denoising) and JPEG. The algorithms were
set to provide the following absolute compression ratios: low (2.5×, ADG), moderate (7.5×, BEH) or high (22.5×, CFI). The nuclei were analyzed using
relative (see Materials and Methods) texture (Haralick) parameters: sum of squares (ABC), entropy (DEF) and difference variance (GHI). The parameters
were calculated at a distance of 2 (white bars) and 5 (grey bars) pixels. The standard deviation is represented with error bars.

might not be retrieved from a biological micrograph (which
does not usually contain sinusoidal patterns) owing to the
presence of noise. Therefore, it is probable that the proposed
denoising routine should perform at least equally well in case
of biological micrographs containing objects of more complex
morphology than cell nuclei. This notion is supported by
our latest results, which are being prepared for a separate
publication.

The approach proposed in this manuscript focusses on
characteristics of input images, instead of analyzing the
output of image interpretation/analysis procedures. To
validate irreversible compression algorithm for microscopy
applications, one may demonstrate that irreversible
compression did not affect results of specified measurements

that used the images as input data (Cosman et al., 1994;
Tengowski, 2004). However, modern imaging techniques
frequently involve automated schemes of image analysis.
Therefore, logically such validation procedures should be
repeated whenever biological sample, imaging system,
image-registration conditions or image-analysis procedure is
changed. Consequently, even though compliance of JPEG and
irreversible JPEG2000 with 21 CFR part 11 can be ascertained
using this approach (Cosman et al., 1994; Tengowski, 2004), it
may not easily be extended or generalized, and may be limited
to standard, repeatable assays.

The denoising scheme proposed in this paper is similar
to algorithms published previously, which comprise noise
estimator and wavelet shrinkage (thresholding) scheme where
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Fig. 9. Influence of irreversible compression on textures in images of PI-stained nuclei, determined using wavelet (Haar) decomposition. The images were
compressed using denoising followed by JPEG2000, irreversible JPEG2000 (without denoising) and JPEG with low (2.5×, AB), moderate (7.5×, CD) and
high (22.5×, EF) absolute compression ratios. The relative wavelet energy was measured at first (ACD) and second (BEF) decomposition levels, following
application of high-pass (H) and low-pass (L) filters in sequence. The standard deviation is represented with error bars.

amount of shrinkage depends on SNR (Kolaczyk, 1997;
Kolaczyk, 1999b; Nowak & Baraniuk, 1999). The proposed
algorithm includes an unbiased Poisson noise estimator
(described in (Nowak & Baraniuk, 1999) but instead of single-
step wavelet thresholding method presented in this paper
an iterative bivariate wavelet technique (Sendur & Selesnick,
2002) was applied to perform image denoising. Consequently,
one may not claim that the proposed denoising method is
optimal in limiting case (i.e. when the number of wavelet
coefficients is infinite) (Nowak, 1997; Nowak & Baraniuk,

1999). However, in a non-limiting case (finite number of
coefficients corresponding to a micrograph) performance of
the proposed method was similar or better compared with
the former algorithm (Nowak & Baraniuk, 1999) (data not
shown). Furthermore, one may expect that performance this
Poisson noise estimator (Nowak & Baraniuk, 1999) combined
with wavelet shrinkage should be superior to alternative
methods of removal of this form of noise (Besbeas et al.,
2004) when signal components are broad and their edges
are smooth. One should note that a band-limited microscope
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Fig. 10. Distortion in images of cell nuclei stained with PI in the course of irreversible compression. The fragment indicated with a white square (A, raw
image) was magnified to show effects of compression (ratio 22.5×) with irreversible JPEG2000 with denoising (B) and without denoising (C) and JPEG
(D). Bar – 2.5 μm.

image is sampled at Nyquist frequency is likely to represent this
type of data. Another important advantage of this approach
to image denoising is its flexibility. In our imaging system,
photonic noise was predominant and therefore might be
characterized using simple Poisson model. However, the
proposed approach presented here may easily be extended
to incorporate other noise sources modelled as composite
(additive, power or multiplicative) functions of the signal.
Examples of such extension include removal of Rician noise
from NMR images (Nowak, 1999). This type of noise is signal-
dependent and tends to approach Rayleigh distribution at low
SNR, whereas at high SNR, its distribution is approximately
Gaussian (Nowak, 1999). Composite type of noise is present
also in fluorescence micrographs registered with a CCD camera
(Bernas et al., 2007). At low signal level, the noise is signal-
independent with Gaussian distribution, whereas at high level,
the noise is signal-independent and follows Poisson statistics
(Bernas et al., 2007). Hence, if a function of dependence
between noise and signal is for a given detector, one may embed
it into denoising procedure which, consequently, may be
constructed so as preserve signal registered using the imaging
system (microscope) equipped with this detector.

Our data do not permit us to make general statements
regarding the computational complexity of the proposed
method. However, the denoising procedure implemented
on an entry-level desktop PC typically required 15s–18s.
Therefore, we think that although the complexity is on the
high side, it is not prohibitive.

The denoised images were coded using a simple scalar
quantization implemented in JPEG2000 (ISO/IEC, 2002).
However, our preliminary results indicate that use of more
sophisticated coding techniques like SFQ (Xiong et al., 1997)
results in a further decrease in size of the denoised image
files without information loss. Thus, one may optimize a
coding/quantization procedure to take best advantage of a
particular image denoising procedure.
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Fig. 11. Influence of irreversible compression on images of the array test pattern registered with large (average of 72.8 per pixel, white bars) and small (an
average of 4.1 per pixel, dark bars) number of photons. The images were compressed with moderate (7.5×, ACE) and high (22.5×, BDF) absolute ratios.
The fidelity of reproduction of the test pattern was estimated using relative contrast between the bright and the dark bars (see Materials and Methods).
The contrast was calculated shifting the pattern with respect to itself by one bar width. The respective widths were 0.100 μm (AB), 0.125 μm (CD) and
0.250 μm (EF). The wavelet denoising followed by irreversible JPEG2000 (moderate and high ratio) is shown with slash pattern. Effects of compression
(with the same ratio as obtained using the denoising) using JPEG (backslash pattern) and irreversible JPEG2000 without denoising (grid pattern) are
shown for comparison.
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