
Michael A. Wirth, Ph.D.
University of Guelph

Computing and Information Science
Image Processing Group

© 2004

Shape Analysis
& Measurement



2

Shape Analysis & Measurement
• The extraction of quantitative feature 

information from images is the objective  of  
image analysis.

• The objective may be:
– shape quantification
– count the number of structures
– characterize the shape of structures
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Shape Measures
• The most common object measurements 

made are those that describe shape.
– Shape measurements are physical dimensional 

measures that characterize the appearance of an 
object.

– The goal is to use the fewest necessary measures 
to characterize an object adequately so that it may 
be unambiguously classified.
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Shape Measures
• The performance of any shape 

measurements depends on the quality of the 
original image and how well objects are pre-
processed.
– Object degradations such as small gaps, spurs, 

and noise can lead to poor measurement results, 
and ultimately to misclassifications.

– Shape information is what remains once location, 
orientation, and size features of an object have 
been extracted.

– The term pose is often used to refer to location, 
orientation, and size.
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Shape Descriptors
• What are shape descriptors?

– Shape descriptors describe specific characteristics 
regarding the geometry of a particular feature.

– In general, shape descriptors or shape features
are some set of numbers that are produced to 
describe a given shape. 
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Shape Descriptors
– The shape may not be entirely reconstructable

from the descriptors, but the descriptors for 
different shapes should be different enough that 
the shapes can be discriminated.

– Shape features can be grouped into two classes: 
boundary features and region features.
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Distances
• The simplest of all distance measurements is 

that between two specified pixels (x1,y1) and 
(x2,y2).

• There are several ways in which distances 
can be defined:
– Euclidean

– Chessboard

2 2
1 2 1 2( ) ( )d x x y y= − + −

( )1 2 1 2max ,d x x y y= − −
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Distances
– City-block

1 2 1 2d x x y y= − + −

Euclidean City-block    
Chessboard
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Area
• The area is the number of pixels in a shape.

• The convex area of an object is the area of the 
convex hull that encloses the object.

Net Area                            Convex Area
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Area

Original Image                Net Area                  Filled Area



11

Perimeter
• The perimeter [length] is the number of pixels 

in the boundary of the object.
– If x1,…,xN is a boundary list, the perimeter is given 

by:

– The distances di are equal to 1 for 4-connected 
boundaries and 1 or        for 8-connected 
boundaries.

-1 -1

1
1 1

perimeter  
N N

i i i
i i

d x x +
= =

= = −∑ ∑

2
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Perimeter
• For instance in an 8-connected boundary, the 

distance between diagonally adjacent pixels 
is the Euclidean measure 
– The number of diagonal links in N4–N8, and the 

remaining N8–(N4–N8) links in the 8-connected 
boundary are of one pixel unit in length. Therefore 
the total perimeter is:

2

4 8perimeter ( 2 1) (2 2)N N= − + −
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Perimeter
• The convex perimeter of an object is the 

perimeter of the convex hull that encloses the 
object.

object perimeter
convex perimeter
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Major Axis
• The major axis is the  (x,y) endpoints of the 

longest line that can be drawn through the 
object.
– The major axis endpoints (x1,y1) and (x2,y2) are 

found by computing the pixel distance between 
every combination of border pixels in the object 
boundary and finding the pair with the maximum 
length.
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Major Axis Length
• The major-axis length of an object is the pixel 

distance between the major-axis endpoints 
and is given by the relation:

– The result is measure of object length.

( ) ( )2 2
2 1 2 1major-axis length x x y y= − + −
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Major Axis Angle
• The major-axis angle is the angle between 

the major-axis and the x-axis of the image:

– The angle can range from 0° to 360°.
– The result is a measure of object orientation.

1 2 1

2 1

major-axis angle tan y y
x x

−  −
=  − 
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Minor Axis
• The minor axis is the (x,y) endpoints of the 

longest line that can be drawn through the 
object whilst remaining perpendicular with the 
major-axis.
– The minor axis endpoints (x1,y1) and (x2,y2) are 

found by computing the pixel distance between 
the two border pixel endpoints.
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Minor Axis Length
• The minor-axis length of an object is the pixel 

distance between the minor-axis endpoints 
and is given by the relation:

– The result is measure of object width.

( ) ( )2 2
2 1 2 1minor-axis length x x y y= − + −
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Major and Minor Axes

Minor
Axis

Major Axis
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Compactness
• Compactness is defined as the ratio of the 

area of an object to the area of a circle with 
the same perimeter.

– A circle is used as it is the object with the most 
compact shape.

– The measure takes a maximum value of 1 for a 
circle

– A square has compactness = 

2

4compactness  
( )

area
perimeter
π ⋅

=

4π
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Compactness
– Objects which have an elliptical shape, or a 

boundary that is irregular rather than smooth, will 
decrease the measure.

– An alternate formulation:

– The measure takes a minimum value of 1 for a 
circle

– Objects that have complicated, irregular 
boundaries have larger compactness.

2( )compactness  
4

perimeter
areaπ

=
⋅
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Compactness

low compactness compactness=0.764 compactness=0.668
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Elongation
• In its simplest form elongation is the ratio 

between the length and width of the object 
bounding box:

– The result is a measure of object elongation, given 
as a value between 0 and 1.

– If the ratio is equal to 1, the object is roughly 
square or circularly shaped. As the ratio 
decreases from 1, the object becomes more 
elongated.

bounding-box

bounding-box

width
elongation  

length
=
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Elongation
• This criterion cannot succeed in curved 

regions, for which the evaluation of 
elongatedness must be based on maximum 
region thickness. 
– Elongatedness can be evaluated as a ratio of the 

region area and the square of its thickness. 
– The maximum region thickness (holes must be 

filled if present) can be determined as the number 
d of erosion steps that may be applied before the 
region totally disappears. 2elongation  

2
area

=
d
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Elongation

high elongation low elongation

length

width



26

Eccentricity
• Eccentricity is the ratio of the length of the 

short (minor) axis to the length of the long 
(major) axis of an object:

– The result is a measure of object eccentricity, 
given as a value between 0 and 1.

– Sometimes known as ellipticity. 

short

long

axislengtheccentricity  
axislength

=
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Eccentricity

high eccentricity low eccentricity
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Eccentricity
• Eccentricity can also be calculated using 

central moments:

( )2
02 20 114

eccentricity
area

µ µ µ− +
=
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Measures of “Circularity”
• Sometimes it is useful to have measures that 

are sensitive only to departures of a certain 
type of circularity:

e.g. convexity (measures irregularities)
roundness (excludes local irregularities)
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Circularity or Roundness
• A measure of roundness or circularity (area-to-

perimeter ratio) which excludes local irregularities 
can be obtained as the ratio of the area of an object 
to the area of a circle with the same convex 
perimeter:

– This statistic equals 1 for a circular object and less than 1 for 
an object that departs from circularity, except that it is 
relatively insensitive to irregular boundaries.

2

4roundness  
( )

area
convex perimeter

π ⋅
=
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Circularity

roundness=0.584 roundness=0.447
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Sphericity
• Sphericity measures the degree to which an 

object approaches the shape of a “sphere”.

– For a circle, the value is the maximum of 1.0

sphericity inscribing

circumscribing

R
R

=
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Convexity
• Convexity is the relative amount that an 

object differs from a convex object.
– A measure of convexity can be obtained by 

forming the ratio of the perimeter of an object’s 
convex hull to the perimeter of the object itself:

convex perimeterconvexity  
perimeter

=
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Convexity
– This will take the value of 1 for a convex object, 

and will be less than 1 if the object is not convex, 
such as one having an irregular boundary.

convexity=0.483 convexity=0.349convexity=1.0
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Aspect Ratio
• The aspect ratio measures the ratio of the 

objects height to its width.

heightaspect ratio  
width

=
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Caliper Dimensions
• Caliper or feret diameters are the distances 

between parallel tangents touching oppoisite 
sides of an object.
– At orientation θ, the caliper diameter is:

– Certain caliper diameters are of special interest:
• The width of an object (θ = 0°)

( )( , )
max( sin cos ) min ( sin cos )

xy Ax y A
x y x yθ θ θ θ

∈∈
+ − +

( , )( , )
max( ) min ( )

x y Ax y A
y y

∈∈
−
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Caliper Dimensions
• The height of an object (θ = 90°)

• The maximum caliper diameter is one definition 
of an objects length.

( , )( , )
max( ) min ( )

x y Ax y A
x x

∈∈
−
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Curl
• The curl of an object measures the degree to 

which an object is “curled up”. 

fiber length

fibre widthlengthcurl  
fibre length

=

length

breadth
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Curl
• As the measure of curl decreases, the degree 

to which they are “curled up” increases.

2perimeter- (perimeter) 16 area
fibre length  

4
− ⋅

=

areafibre width  
fibre length

=
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Convex Hull
• The convex hull of an object is defined to be 

the smallest convex shape that contains the 
object.
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Solidity
• Solidity measures the density of an object. 

• A measure of solidity can be obtained as the 
ratio of the area of an object to the area of a 
convex hull of the object:

areasolidity  
convex area

=
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Solidity
– A value of 1 signifies a solid object, and a value 

less than 1 will signify an object having an 
irregular boundary, or containing holes.

solidity=0.782 solidity=0.592solidity=1.0
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Shape Variances
• Sometimes a shape should be compared 

against a template. 
– A circle is an obvious and general template 

choice. The circular variance is the proportional 
mean-squared error with respect 
to solid circle. 

– It gives zero for a perfect 
circle and increases along 
shape complexity and 
elongation. 
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Shape Variances
• Elliptic variance is defined similarly to the 

circular variance. An ellipse is fitted to the 
shape (instead of a circle) and the mean-
squared error is measured.
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Rectangularity
• Rectangularity is the ratio of the object to the 

area of the minimum bounding rectangle.
– Let Fk be the ratio of region area and the area of a 

bounding rectangle, the rectangle having the 
direction k. The rectangle direction is turned in 
discrete steps as before, and rectangularity 
measured as a maximum of this ratio Fk

– Rectangularity has a value of 1 for perfectly 
rectangular object

k
rectangularity  max( )kF=
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Bounding Box
• The bounding box or bounding rectangle of 

an object is a rectangle which circumscribes 
the object. The dimensions of the bounding 
box are those of the major and minor axes.
– The area of the bounding box is:

– The minimum bounding box is the minimum area 
that bounds the shape.

area  (major axis length) (minor axis length)= ∗
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Bounding Box

bounding boxes
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Direction
• Direction is a property which makes sense in 

elongated regions only. If the region is 
elongated, direction is the direction of the 
longer side of a minimum bounding rectangle. 
– If the shape moments are known, the direction θ

can be computed as:

1 11

20 02

21 tan
2

µ
θ

µ µ
−  

=  − 
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Direction
• Elongatedness and rectangularity are 

independent of linear transformations 
translation, rotation, and scaling. 

• Direction is independent on all linear 
transformations which do not include rotation. 

• Mutual direction of two rotating objects is 
rotation invariant. 
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Orientation
• The overall direction of the shape.
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Topological Descriptors
• Topological properties are useful for global 

descriptions of objects in an image.
– Features that do not change with elastic 

deformation of the object.
– For binary regions, topological features include the 

number of holes in a region, and the number of 
indentations, or protrusions.

– One topological property is the number of 
connected components.
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Topological Descriptors
• The number of holes H and connected 

components C in an image can be used to 
define the Euler number.
– The Euler number is defined as the number of 

components minus the number of holes:

– This simple topological feature is invariant to 
translation, rotation and scaling.

Euler number   - = C H
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Boundary Descriptors
• The shape of a region can be represented by 

quantifying the relative position of 
consecutive points on its boundary.

• A chain code consists of a starting location 
and a list of directions d1,d2,…,dN provides a 
compact representation of all the information 
in a boundary.
– The directions di are estimates of the slope of the 

boundary.
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Boundary Descriptors
• Chain codes are based on 4- or 8-

connectivity:

e.g.
2,1,0,7,7,0,1,1

1
0
7

2

6

3
4
5
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Boundary Descriptors
• The k-slope of the boundary at (xi,yi) can be 

estimated from the slope of the line joining 
(xi-k/2,yi-k/2) and (xi+k/2,yi+k/2) for some small, 
even value of k. Calculated as an angle of:

measured in a clockwise direction, with a 
horizontal slope taken to be zero.

2 21

2 2

tan i k i k

i k i k

y y
x x

+ −−

+ −

 −
  − 
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Boundary Descriptors: Curvature
• The k-curvature of the boundary at (xi,yi) can 

be estimated from the change in the k-slope:

1 1tan tan (mod2 )i k i i i k

i k i i i k

y y y y
x x x x

π− −+ −

+ −

    − − −    − −     
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Boundary Descriptors: Curvature
• The curvature (κ) of an object is a local shape 

attribute.

– Convex shapes yield positive curvatures
– Concave shapes yield negative curvatures



58

Boundary Descriptors: Bending 
Energy

• The total bending energy EC is a robust global 
shape descriptor.
– The bending energy of a boundary may be 

understood as the energy necessary to bend a rod 
to the desired shape and can be calculated as a 
sum-of-squares of the boundary curvature κ(p) 
over the boundary length L.

– The minimum value 2π/R is obtained for a circle of 
radius R.

2 21

1
( )

L

c cL R
p

E p Eπκ
=

= ≤ ≤ ∞∑
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Boundary Descriptors: Bending 
Energy

• For example:

chain-code: 0 0 2 0 1 0 7 6 0 0
curvature: 0 2 –2 1 –1 –1 –1 2 0
sum of squares: 0 4 4 1 1 1 1 4 0
Bending Energy = 16
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Boundary Descriptors:

Total Absolute Curvature
• This descriptor is a measure of the total 

absolute curvature in an object:

– The minimum value is found for all convex objects.

1

1
( ) 2

L

total totalL
p

pκ κ π κ
=

= ≤ ≤ ∞∑
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Moment Analysis
• The evaluation of moments represents a 

systematic method of shape analysis.
– The most commonly used region attributes are 

calculated from the three low-order moments.
– Knowledge of the low-order moments allows the 

calculation of the central moments, normalised 
central moments, and moment invariants.
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Spatial Moments
• To define the (p,q)th-order moment:

• The zeroth-order moment m00 simply 
represents the sum of the pixels contained in 
an object and gives a measure of the area
(because x0=y0=1)

1 1

0 0
for , 0,1,2,...

M N
p q

pq
x y

m x y p q
− −

= =

= =∑∑
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Spatial Moments
• The first-order moments in x (m10) and y (m01) 

normalised by the area can be used to 
specify the location of an object:
– The centre of gravity, or centroid of an object is a 

measure of the object’s location in the image.
– It has two components, denoting the row and 

column positions of the point of balance of the 
object.

( ) 10 01

00 00

centroid , ,m mx y
m m

 
= =  

 
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Spatial Moments

x

y

θ
,x y
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Central Moments
• The central moments (i.e. p+q >1) 

represent descriptors of a region that are 
normalised with respect to location. 

( ) ( )
1 1

0 0
for 1

M N
p q

pq
x y

x x y y p qµ
− −

= =

= − − + >∑∑

pqµ
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Normalised Central Moments
• The central moments can be normalised with 

respect to the zeroth moment to yield the 
normalised central moment:

• The most commonly normalised central 
moment is η11, the first central moment in x 
and y.
– This provides a measure of the deviation from a 

circular region shape. A value close to zero 
describes a region that is close to circular.

00

( ) 2 1
pq pq

p q

γη µ µ

γ

=

= + +
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Central Moments
• Central moments are translation invariant:

– i.e. two objects that are identical except for having 
different centroids, will have identical values of

– Central moments are not rotationally invariant 
• Central moments are not rotationally invariant 

– they will change if an object is rotated. 

pqµ
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Central Moments
• The second-order central moments:

• The second-order moments measure how 
dispersed the pixels in an object are from 
their centroid:
– measures the object’s spread over rows
– measures the object’s spread over columns
– is a cross-product term representing spread in 

the direction in which both row and column indices 
increase.

20µ
02µ
11µ

2 2
10 01 10 01

20 20 02 02 11 11
00 00 00

m m m mm m m
m m m

µ µ µ= − = − = −
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Principal Axes
• Principal axes of an object can be uniquely 

defined as segments of lines crossing each 
other orthogonally in the centroid of the object 
and representing the directions with zero 
cross-correlation. This way, a contour is seen 
as an realization of a statistical distribution. 
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Principal Axes
• Principal (major and minor) axes are defined 

to be those axes that pass through the 
centroid, about which the moment of inertia of 
the region is, respectively maximal or 
minimal.
– The orientation of the major axis:

which is measured clockwise, with the horizontal 
direction taken as zero.

– This can be used to find the minimum bounding 
box.

1 111
2

20 02

2tan µ
θ

µ µ
−  

=  − 
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Moment Invariants
• Normalisation with respect to orientation 

results in rotationally invariant moments.
– The first two are the following functions of the 

second-order central moments:

– The first of these statistics is the moment of 
inertia, a measure of how dispersed, in any 
direction, the pixels in an object are from their 
centroid.

– The second statistic measures whether this 
dispersion is isotropic or directional.

( )
1 20 02

2 2
2 20 02 114

φ η η

φ η η η

= +

= − +
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Moment Invariants

( )
( ) ( )
( ) ( )

1 20 02
2 2

2 20 02 11

2 2
3 30 12 21 03

2 2
4 03 12 21 03

4

3 3

φ η η

φ η η η

φ η η η η

φ η η η η

= +

= − +

= − + −

= + + +
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Central Moments

10 01

11 11 10 01 00
2

20 20 10 00
2

02 02 01 00
2

30 30 20 10
2

03 03 02 01
2

12 12 11 02 10
2

21 21 11 20 01

0

3 2
3 2
2 2
2 2

m m m m

m m m

m m m

m xm m x

m ym m y

m ym xm m y

m xm ym m x

µ µ
µ

µ

µ

µ

µ

µ

µ

= =

= −

= −

= −

= − +

= − +

= − − +

= − − +
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Radial Distance Measures
• The shape of a structure of interest can be 

determined by analysing its boundary, the 
variations and curvature of which constitute 
the information to be quantified.
– Transform the boundary into a 1D signal and 

analysing its structure.
– The radial distance is measured from the central 

point (centroid) in the object to each pixel x(n), 
y(n) on the boundary.
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Radial Distance Measures
• Generally the centroid is used as the central 

point, and the radial distance:

is obtained by tracing all 
N pixels of the boundary.

[ ] [ ]2 2( ) ( ) ( ) 0,1,..., 1d n x n x y n y n N= − + − = −

d
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Radial Distance Measures
• To achieve scale invariance, the normalised

radial distance r(n) is obtained by normalising
d(n) with the maximal distance

• The number of times the signal r(n) crosses 
its mean and other similar metrics can be 
used as a measure of boundary roughness.
– Kilday, J., Palmieri, F., and Fox, M.D., “Classifying mammographic 

lesions using computerized image analysis”, IEEE Transactions on 
Medical Imaging, 1993, 12: pp.664-669
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Radial Distance Measures
• The sequence r(n) is further analysed to 

extract shape metrics such as the entropy:

where hk is the k-bin probability histogram 
that represents the distribution of r(n) as well 
as the statistical moments:

1
E log

K

k k
k

h h
=

= ∑

[ ]
1

1

0
( )

N
p

p N
n

m r n
−

=

= ∑
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Radial Distance Measures
• The central moment:

• Normalised moments invariant to translation, 
rotation and scaling:

[ ]
1

1
1

0
( )

N
p

p N
n

r n mµ
−

=

= −∑

2
2

p
p p

m
m

µ
= 2

2

2p
p p p

µ
µ

µ
= ≠
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Fourier Descriptor
• The information in the r(n) signal can be 

further analysed in the spectral domain using 
the discrete Fourier transform (DFT):

– The “low-frequency” terms, correspond to the 
smooth behavior.

– The “high-frequency” terms correspond to the 
jagged, bumpy behavior roughness

1
21

0
( ) ( ) 0,1,..., 1

N
j nu N

N
n

a u r n e u Nπ
−

−

=

= = −∑



81

References:

Radial Distance Measures
1. Pohlman, K.A., Powell, K.A., Obuchowski, N.A., Chilcote, W.A., 

Grunfest-Bronlatowski, S., “Quantitative classification of breast 
tumours in digitized mammograms”, Medical Physics, 1996, 23: 
pp.1337-1345 (masses)

2. Bruce, L.M., Kallergi, M., “Effects of image resolution and 
segmentation method on automated mammographic mass shape 
classification”, Proceedings of the SPIE, 1999, 3661: pp.940-947 
(masses)

3. Kilday, J., Palmieri, F., and Fox, M.D., “Classifying 
mammographic lesions using computerized image analysis”, 
IEEE Transactions on Medical Imaging, 1993, 12: pp.664-669 
(masses)

4. Shen, L., Rangayyan, R.M., and Desautels, J.E.L., “Application of 
shape analysis to mammographic calcifications”, IEEE 
Transactions on Medical Imaging, 1994, 13: pp.263-274 
(calcifications)



82

Contour-based Shape Representation & Description

• Object boundaries must be expressed in 
some mathematical form:
– Rectangular (Cartesian) coordinates
– Polar coordinates (in which boundary elements 

are represented as pairs of angle φ and distance r.

x

y

rφ
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Fractal Dimension
• The fractal dimension is the rate at which the 

perimeter of an object increases as the 
measurement scale is reduced.
– The fractal dimension produces a single numeric 

value that summarizes the irregularity of 
“roughness” of the feature boundary
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Fractal Dimension
• Richardson dimension

– Counting the number of strides needed to “walk” 
along the boundary, as a function of stride length.

number of steps × stride-length = perimeter measurement
– As the stride length is reduced, the path follows 

more of the local irregularities of the boundary and 
the measured parameter increases.

– The result, plotted on log-log axes is a straight line 
whose slope gives the fractal dimension.
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Mammogram Features
• Shape descriptors can be used to 

characterise features extracted from 
mammograms.

Round

Oval

Lobulated
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Cell Image Features
• When dealing with images containing 

numerous objects, such as histological or 
cytological cell images, shape descriptors are 
calculated for all the individual cells.
– Global shape measures can be calculated from 

the individual image descriptors:
• Standard deviation area, short-axis, long-

axis, perimeter, circularity, 
• Mean compactness, elongation, perimeter, 

area
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Profile
• The profile of a binary image analyses the 

binary image in terms of its projections.
– Projections can be vertical, horizontal, diagonal, 

circular, radial, spiral.
e.g. used in determining a 
region of highest density

– A profile is the sum of the pixel values in a 
specified direction
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Signature Analysis
• A signature is a one-dimensional 

representation of the boundary.
– Computing the distance from 

the centroid of an object to the 
boundary as a function of angles, 
from 0° 360° in any chosen 
increment.

– Harmonic analysis, or shape unrolling
– The plot repeats every 2π

ϕ

r
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Hough Transform
• The Hough transform is a global technique 

that finds the occurrence of objects of a 
predefined shape.
– Used to identify shapes within a binary image 

containing disconnected points.
– A cluster of such points may assume the shape of 

a line, a circle etc.
– The central idea of the Hough transform is to 

represent a line made up of many pixels by a 
single peak in parametric space the 
accumulator array
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Hough Transform
– This single peak has coordinate values in the 

accumulator array of two parameters necessary to 
describe the line, such as slope and intersect.

– Permits the detection of parametric curves
• e.g. circles, straight lines, ellipses, spheres, 

ellipsoids etc.
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Hough Transform
• Consider the parametric representation of a 

line:

– In parameter space (m,c), any straight line in 
image space is represented by a single point.

– Any line that passes through a point (p,q) in image 
space corresponds to the line c=–mp+q in 
parameter space.

y mx c= +
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Hough Transform
• To detect straight lines in an image:

– Quantise the parameter space (m,c) and create an 
accumulator array (each dimension in the array 
corresponds to one of the parameters).

– For every “1” pixel (xi,yi) in the binary image 
calculate c=–mxi+yi for every value of the 
parameter m and increment the value of the entry 
(m,c) in the accumulator array by one.
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Hough Transform
– This model is inadequate for representing vertical 

lines, a case for which m approaches infinity. To 
address this problem the normal representation of 
a line can be used:

– This equation describes a line having orientation θ
at distance r from the origin. Here, a line passing 
through a point (xi,yi) in the image corresponds to 
a sinusoidal curve 

cos sinr x yθ θ= +

cos sini ir x yθ θ= +
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Hough Transform
Algorithm:
1. Quantise the parameter space 

accumulator array
2. Initialise all the cells in the accumulator 

array to zero.
3. For each point (x,y) in the image space, 

increment by 1 each of the accumulators 
that satisfy the equation.

4. Maxima in the accumulator array correspond 
to the parameters in the model.
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Hough Transform:
Finding the Boundary of the Pectoral Muscle

binary image           accumulator extracted
array boundary
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Terminology
• A line joining any two points on the boundary 

of an object is known as a chord.
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Fourier Descriptors
• Staib, L.H., Duncan, J.S., “Boundary fitting with 

parametrically deformable models”, IEEE 
Transactions on Pattern Analysis and Machine 
Intelligence, 1992, 14(11): pp.1061-1075


