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Texture Analysis
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What is Texture?
• Texture is a feature used to partition images 

into regions of interest and to classify those 
regions.

• Texture provides information in the spatial 
arrangement of colours or intensities in an 
image.

• Texture is characterized by the spatial 
distribution of intensity levels in a 
neighborhood.
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What is Texture?
• Texture is a repeating pattern of local 

variations in image intensity:
– Texture cannot be defined for a point.
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What is Texture?
• For example, an image has a 50% black and 

50% white distribution of pixels.

• Three different images with the same 
intensity distribution, but with different 
textures.
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Texture
• Texture consists of texture primitives or 

texture elements, sometimes called texels.
– Texture can be described as fine, coarse, grained, 

smooth, etc.
– Such features are found in the tone and structure

of a texture.
– Tone is based on pixel intensity properties in the 

texel, whilst structure represents the spatial 
relationship between texels.
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Texture
– If texels are small and tonal differences between 

texels are large a fine texture results.
– If texels are large and consist of several pixels, a 

coarse texture results.
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Texture Analysis
• There are two primary issues in texture 

analysis:
texture classification
texture segmentation

• Texture segmentation is concerned with 
automatically determining the boundaries 
between various texture regions in an image.

• Reed, T.R. and J.M.H. Dubuf, CVGIP: Image Understanding, 57: pp. 
359-372. 1993.
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Texture Classification
• Texture classification is concerned with 

identifying a given textured region from a 
given set of texture classes.
– Each of these regions has unique texture 

characteristics.
– Statistical methods are extensively used.

e.g. GLCM, contrast, entropy, homogeneity
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Defining Texture
• There are three approaches to defining 

exactly what texture is:
Structural: texture is a set of primitive texels in 
some regular or repeated relationship.
Statistical: texture is a quantitative measure of the 
arrangement of intensities in a region. This set of 
measurements is called a feature vector.
Modelling: texture modelling techniques involve 
constructing models to specify textures.
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Defining Texture
• Statistical methods are particularly useful 

when the texture primitives are small, 
resulting in microtextures.

• When the size of the texture primitive is large, 
first determine the shape and properties of 
the basic primitive and the rules which govern 
the placement of these primitives, forming 
macrotextures.
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Simple Analysis of Texture
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Range
• One of the simplest of the texture 

operators is the range or 
difference between maximum and 
minimum intensity values in a 
neighborhood.
– The range operator converts the 

original image to one in which 
brightness represents texture.
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Variance
• Another estimator of texture is 

the variance in neighborhood 
regions.
– This is the sum of the squares of 

the differences between the 
intensity of the central pixel and its 
neighbours.
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Quantitative Texture Measures
• Numeric quantities or statistics that describe 

a texture can be calculated from the 
intensities (or colours) themselves
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Grey Level Co-occurrence
• The statistical measures described so far are 

easy to calculate, but do not provide any 
information about the repeating nature of 
texture.

• A gray level co-occurrence matrix (GLCM) 
contains information about the positions of 
pixels having similar gray level values.
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GLCM
• A co-occurrence matrix is a two-dimensional 

array, P, in which both the rows and the 
columns represent a set of possible image 
values.
– A GLCM Pd[i,j] is defined by first specifying a 

displacement vector d=(dx,dy) and counting all 
pairs of pixels separated by d having gray levels i 
and j.

– The GLCM is defined by:
[ , ]d ijP i j n=
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GLCM
– where nij is the number of occurrences of the pixel 

values (i,j) lying at distance d in the image.
– The co-occurrence matrix Pd has dimension n×n, 

where n is the number of gray levels in the image.
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GLCM
• For example, if d=(1,1)

there are 16 pairs of pixels in the image 
which satisfy this spatial separation. Since 
there are only three gray levels, P[i,j] is a 3×3 
matrix.

2 1 2 0 1
0 2 1 1 2
0 1 2 2 0
1 2 2 0 1
2 0 1 0 1

i
j

0 2 2
2 1 2
2 3 2

dP =
0

1 i

2

0 1 2

j
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GLCM
Algorithm:
• Count all pairs of pixels in which the first pixel 

has a value i, and its matching pair displaced 
from the first pixel by d has a value of j.

• This count is entered in the ith row and jth
column of the matrix Pd[i,j]

• Note that Pd[i,j] is not symmetric, since the 
number of pairs of pixels having gray levels 
[i,j] does not necessarily equal the number of 
pixel pairs having gray levels [j,i].
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Normalised GLCM
• The elements of Pd[i,j] can be normalised by 

dividing each entry by the total number of 
pixel pairs.
Normalised GLCM; N[i,j], defined by: 

which normalises the co-occurrence values to 
lie between 0 and 1, and allows them to be 
thought of as probabilities.

[ , ][ , ]
[ , ]

i j

P i jN i j
P i j

=
∑∑
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Numeric Features of GLCM
• Gray level co-occurrence matrices capture 

properties of a texture but they are not 
directly useful for further analysis, such as the 
comparison of two textures.

• Numeric features are computed from the co-
occurrence matrix that can be used to 
represent the texture more compactly.
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Maximum Probability
• This is simply the largest entry in the matrix, 

and corresponds to the strongest response.
– This could be the maximum in any of the matrices 

or the maximum overall.

,
max [ , ]m di j

C P i j=
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Maximum Probability
• Maximum probability with w=21, and d=(2,2)
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Moments
• The order k element difference moment can 

be defined as:

• This descriptor has small values in cases 
where the largest elements in P are along the 
principal diagonal. The opposite effect can be 
achieved using the inverse moment.

( ) [ , ]k
k d

i j
Mom i j P i j= −∑∑

[ , ] ,
( )

d
k k

i j

P i jMom i j
i j

= ≠
−∑∑
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Moments
• Moments with w=21, and d=(2,2)
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Contrast
• Contrast is a measure of the local variations 

present in an image.

– If there is a large amount of variation in an image 
the P[i,j]’s will be concentrated away from the 
main diagonal and contrast will be high.

– (typically k=2, n=1)

( , ) ( ) [ , ]nk
d

i j
C k n i j P i j= −∑∑
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Contrast
• Contrast with w=21, and d=(2,2)
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Homogeneity
• A homogeneous image will result in a co-

occurrence matrix with a combination of high 
and low P[i,j]’s.

– Where the range of graylevels is small the P[i,j]  
will tend to be clustered around the main diagonal.

– A heterogeneous image will result in an even 
spread of P[i,j]’s.

[ , ]
1

d
h

i j

P i jC
i j

=
+ −∑∑
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Homogeneity
• Homogeneity with w=21, and d=(2,2)
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Entropy

• Entropy is a measure of information content. 
It measures the randomness of intensity 
distribution.

– Such a matrix corresponds to an image in which 
there are no preferred graylevel pairs for the 
distance vector d.

– Entropy is highest when all entries in P[i,j] are of 
similar magnitude, and small when the entries in 
P[i,j] are unequal.

[ , ]ln [ , ]e d d
i j

C P i j P i j= −∑∑
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Entropy
• Entropy with w=21, and d=(2,2)
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Correlation
• Correlation is a measure of image linearity

• Correlation will be high if an image contains a 
considerable amount of linear structure.

[ ][ , ]d i j
i j

c
i j

ijP i j
C

µ µ

σ σ

−
=
∑∑

2 2 2[ , ], [ , ]i d i d iiP i j i P i jµ σ µ= = −∑ ∑
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GLCM - References
• Carlson, G.E. and W.J. Ebel. "Co-occurrence matrix modification for 

small region texture measurement and comparison". in IGARSS'88-
Remote Sensing: Moving Towards the 21st Century, pp.519-520, IEEE, 
Edinburgh, Scotland. 1988.

• Argenti, F., L. Alparone, and G. Benelli, "Fast algorithms for texture 
analysis using co-occurrence matrices". IEE Proceedings, Part F: 
Radar and SIgnal Processing, 137(6): pp. 443-448. 1990.

• Gotlieb, C.C. and H.E. Kreyszig, "textur descriptors based on co-
occurrence matrices". Computer Vision, Graphics and Image 
Processing, 51(1): pp. 70-86. 1990.
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Problems with GLCM
• One problem with deriving texture 

measures from co-occurrence matrices 
is how to choose the displacement 
vector d.

– The choice of the displacement vector is an important parameter in the 
definition of the GLCM.

– Occasionally the GLCM is computed from several values of d and the one 
which maximises a statistical measure computed from P[i,j] is used. 

– Zucker and Terzopoulos used a χ2 measure to select the values of d that 
have the most structure; i.e. to maximise the value:2

2 [ , ]( ) 1
[ ] [ ]
d

i j d d

P i jd
P i P j

χ = −∑∑
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Windowing
• Algorithms for texture analysis are applied to 

an image in a series of windows of size w, 
each centered on a pixel (i,j).
– The value of the resulting statistical measure are 

assigned to the position (i,j) in the new pixel.
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Haralick Texture Operator
• Haralick et al. suggested a set of 14 textural 

features which can be extracted from the co-
occurrence matrix, and which contain 
information about image textural 
characteristics such as homogeneity, 
linearity, and contrast.

• Haralick, R.M., K. Shanmugam, and I. Dinstein, "Textural features for 
image classification". IEEE Transactions on Systems, Man and 
Cybernetics: pp. 610-621. 1973.



37

Graylevel Difference Statistics
• Grey-level differences are based on absoute 

differences between pairs of grey-levels.
• The grey-level differences are contained in a 

256-element vector, and are computed by 
taking the absolute differences of all possible 
pairs of grey levels distance d apart at angle 
θ, and counting the number of times the 
difference is 0,1,…,255
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Graylevel Difference Statistics
• Let d=(dx,dy) be the displacement vector 

between two image pixels, and g(d) the gray-
level difference at distance d.

• pg(g,d) is the histogram of the gray-level 
differences at the specific distance, d. One 
distinct histogram exists for each distance d.

( ) ( , ) ( , )g d f i j f i dx j dy= − + +
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Graylevel Difference Statistics
• The difference statistics are then normalized 

by dividing each element of the vector by the 
number of possible pixel pairs.

• Several texture measures can be extracted 
from the histogram of graylevel differences:
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Graylevel Difference Statistics
• Mean:

– Small mean values µd indicate coarse texture 
having a grain size equal to or larger than the 
magnitude of the displacement vector.

• Entropy:

– This is a measure of the homogeneity of the 
histogram. It is maximised for uniform histograms.

1
( , )

N

d k g k
k

g p g dµ
=

= ∑

1
( , )ln ( , )

N

d g k g k
k

H p g d p g d
=

= −∑
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Graylevel Difference Statistics
• Variance:

– The variance is a measure of the dispersion of the 
gray-level differences at a certain distance, d.

• Contrast:

2 2

1
( ) ( , )

N

d k d g k
k

g p g dσ µ
=

= −∑

2

1
( , )

N

d k g k
k

C g p g d
=

= ∑
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Graylevel Difference Statistics

Mean Standard Deviation     Entropy Contrast



43

Runlength Statistics
• The lengths of texture primitives in different 

directions can serve as a texture description.
– A run length is a set of constant intensity pixels 

located in a line.
• Runlength statistics are calculated by 

counting the number of runs of a given length 
(from 1 to n) for each grey level.

• Galloway, M.M., "Texture classification using gray level run lengths".
Computer Graphics and Image Processing, 4(2): pp. 172-179. 1975.
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Runlength Statistics
• In a course texture it is expected that long 

runs will occur relatively often, whereas a fine 
texture will contain a higher proportion of 
short runs.

• Statistical measures:
– Let B(a,r) be the number of primitives of all 

directions having length r, and grey-level a, m and 
n the image dimensions, and L the number of 
intensity values.

– Let K be the number of runs: 1 1
( , )

L Nr

a r
K B a r

= =

= ∑∑
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Runlength Statistics
Long-run emphasis:

– This is a measure that emphasizes the long-runs of a gray-
level image. Long-run emphasis will be large when there are 
lots of long runs of the same intensity.

Short-run emphasis: 

– This is a measure that emphasizes the short-runs of a gray-
level image. short-run emphasis will be large when 
there are lots of short runs of the same intensity.

21

1 1
( , )

L Nr

lr K
a r

S B a r r
= =

= ∑∑

1
2

1 1

( , )L Nr

sr K
a r

B a rS
r= =

= ∑∑
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Runlength Statistics
Grey-level distribution:

– The sum in [ ] gives the total number of runs for a certain 
gray-level value grey-level a.  The distribution will be large 
when runs are not evenly distributed over the different 
intensities.

2
21

1 1
( , )

L Nr

d K
a r

S B a r r
= =

 
=  

 
∑ ∑
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Runlength Statistics
Run-length distribution:

– The sum in [ ] gives the total number of occurrences of a 
certain run length l for any gray level. s for a certain gray-
level value grey-level r.  

Run percentage:

rp
KS

mn
=

2
21

1 1
( , )

Nr L

rd K
r a

S B a r r
= =

 
=  

 
∑ ∑
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Edges and Texture
• It should be possible to locate the edges that result 

from the intensity transitions along the boundary of 
the texture.
– Since a texture will have large numbers of texels, there 

should be a property of the edge pixels that can be used to 
characterise the texture.

• a set of common directions
• a measure of the locadensity of the edge pixels

• Compute the co-occurrence matrix of an edge-
enhanced image.

• Davis, L.S. and A. Mitiche, "Edge detection in textures". Computer 
Graphics and Image Processing, 12: pp. 25-39. 1980.
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Edges and Texture

Original Sobel-Enhanced Contrast
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Energy and Texture
• One approach to generating texture features 

is to use local kernels to detect various types 
of texture.

• Laws† developed a texture-energy approach 
that measures the amount of variation within 
a fixed-size window.

• † Laws, K.I. "Rapid texture identification". in SPIE Image Processing for 
Missile Guidance, pp.376-380. 1980.
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Laws
• A set of convolution kernels are used to 

compute texture energy.
• The kernels are computed from the following 

vectors:
[ ]
[ ]
[ ]
[ ]
[ ]

L5 1 4 6 4 1
E5 1 2 0 2 1
S5 1 0 2 0 1
R5 1 4 6 4 1

W5 1 2 0 2 1

=
= − −
= − −
= − −
= − − −
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Laws
• The L5 (level) vector gives a centre-weighted 

local average. The E5 (edge) vector detects 
edges, the S5 (spot) vector detects spots, the 
R5 (ripple) vector detects ripples, and the W5
(wave) vector detects waves.

• The two-dimensional convolution kernels are 
obtained by computing the outer product of a 
pair of vectors.
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Laws
e.g. E5L5 is computed as the product of E5
and L5 as follows:

• This results in 25 5×5 kernels, 24 of the 
kernels are zero-sum, the L5L5 is not.

[ ]

1 1 4 6 4 1
2 2 8 12 8 2

1 4 6 4 10 0 0 0 0 0
2 2 8 12 8 2
1 1 4 6 4 1

− − − − − −   
   − − − − − −   
   × =
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E5 L5 R5 S5 W5

E5

L5

R5
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E5 L5 R5 S5 W5

S5

W5
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Laws
• Bias from the “directionality” of textures can 

be removed by combining symmetric pairs of 
features, making them rotationally invariant.

e.g. S5L5(H) + L5S5(V) = L5S5R
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Laws

L5S5                  S5L5

+ =
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Laws
• After the colvolution with the specified kernel, 

the texture energy measure (TEM) is 
computed by summing the absolute values in 
a local neghborhood:

• If n kernels are applied, the result is an n-
dimensional feature vector at each pixel of 
the image being analysed.

1 1
( , )

m n

e
i j

L C i j
= =

= ∑∑
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Laws
ALGORITHM:
• (1) Apply convolution kernels

(2) Calculate the texture energy measure 
(TEM) at each pixel. This is achieved by 

summing the absolute values in a local 
neighborhood.

(3) Normalise features - use L5L5 to
normalise the TEM images
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Fractal Dimension
• Fractal geometry can be used to discriminate 

between textures.
• The fractal dimension D of a set of pixels I is 

specified by the relationship:

where the image I has been broken up into N
overlapping copies of a basic shape, each one scaled 
by a factor, r.

• Russ, J.C., "Surface characterisation: Fractal dimensions, Hurst 
coefficients, and frequency transforms". Journal of Computer Assisted 
Microscopy, 2: pp. 249-257. 1990.

1 DNr=
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Fractal Dimension
• D can be estimated by the Hurst coefficient:

• There is a Log-Log relationship between N
and r. If log(N) were plotted against log(r) the 
result should be a straight line whose slope is 
approximately D.

1

logD
log( )r

N
=
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Hurst
• The Hurst-coefficient is an approximation that 

makes use of this relationship.
– Consider a 7×7 pixel region which is marked according to 

the distance of each pixel from the central pixel.
– There are eight groups of pixels, corresponding to the eight 

difference distances that are possible

Central pixel (d=0)

Distance = 1

Distance = sqrt(2)

Distance = 2

Distance = sqrt(5)

Distance = sqrt(8)

Distance = 3

Distance = sqrt(10)
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Hurst
– Within each group, the largest difference in 

intensity is found, this is the same as subtracting 
the minimum value from the maximum value.

– The central pixel is ignored, and a straight line is 
fitted to the Log of the maximum difference (y-
coord), and the Log og the distance from the 
central pixel (x-coord).

– The slope of this line is the Hurst coefficient, and 
replaces the pixel at the centre of the region.
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Hurst

• The slope of the line, m=1.145 is the Hurst 
coefficient

85 70 86 92 60 102 202
91 81 98 113 86 119 189
96 86 102 107 74 107 194
101 91 113 107 83 118 198
99 68 107 107 76 107 194

107 94 93 115 83 115 198
94 98 98 107 81 115 194

Distance d=1 d= 2 2 5 8 3 10
Difference 30 39 44 50 51 130 138

d d d d d= = = = =

Log(dis) 0.0 0.347 0.693 0.805 1.04 1.099 1.151

Log(dif) 3.401 3.664 3.784 3.912 3.932 4.868 4.927

1.145 3.229y x= +
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Hurst
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Surfaces and Texture
• There are some algorithms that are based on 

a view of the gray-level image as a three-
dimensional surface, where intensity is the 
third dimension.
– Vector dispersion

• Matalas, I., S. Roberts, and H. Hatzakis. "A set of 
multiresolution texture features suitable for unsupervised 
image segmentation". in SIgnal Processing VIII: Theories 
and Applications. 1996.

– Surface curvature
• Peet, F.G. and T.S. Sahota, "Surface curvature as a measure 

of image texture". IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 7(6): pp. 734-738. 1985.
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Model-based Methods
• Model-based methods for texture analysis is 

an approach used to characterize texture 
which determines an analytical model of the 
textured image being analyzed.
– Such models have a set of parameters.
– The values of these parameters determine the 

properties of the texture, which may be 
synthesized by applying the model.
e.g. Markov random fields
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Model-based Methods
• Markov Random Fields (MRF) have been 

extensively studied as a model for texture.
• In the discrete Gauss-Markov random field 

model, the gray level at any pixel is modeled 
as a linear combination of gray levels of its 
neighbors plus an additive noise, as defined 
by:

,
( , ) ( , ) ( , ) ( , )

k l
f i j f i k j l h k l n i j= − − +∑
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Model-based Methods
– The summation is carried out over a specified set 

of pixels which are neighbors to the pixel (i,j)
– The parameters of this model are the weights 

h(k,l).
– These parameters are computed from the given 

texture using least-squares method.
– These estimated parameters are then compared 

with those of the known texture class to determine 
the class of the particular texture being analysed.
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Texture Segmentation
• Any texture measure that provides a value, or 

a vector of values at each pixel, describing 
the texture in a neighborhood of that pixel can 
be used to segment an image into regions of 
similar textures.

• There are two major categories:
Region-based: attempt to group or cluster pixels 
with similar texture properties
Boundary-based: attempt to find “texture-edges”
between pixels from different texture distributions
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Texture Segmentation

GLC: Entropy Original T=4 Entropy T=12 Breast Contour
(Wsize =13) Approximation


