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Policy Forum

This is the second in a series of articles arising 
from the 2007 Global HIV Vaccine Enterprise 
workshops. The first was published in December 
2007 (PLoS Med 4(12): e348. doi:10.1371/
journal.pmed.0040348).

The workshop on Improving 
Defences at the Portal of Entry: 
Mucosal and Innate Immunity 

was held in June of 2007 in Durham, 
North Carolina, United States, with 
the goal of identifying key scientific 
issues in mucosal (section I) and innate 
(section II) immunity, as it pertains 
to immune protection against HIV 
infection, that have emerged since 
the Enterprise Strategic Plan was first 
published in 2005 [1].

Defining the earliest events 
in mucosally transmitted HIV-1 
infection is of central importance for 
characterizing the precise virus–host 
interactions that must be altered by 
vaccine-induced immune responses. 
Mucosal transmission of HIV-1 
infection is mediated by exposure to 
infectious virus and/or cells within 
mucosal secretions, can occur within 
minutes, is established within hours, 
and can be disseminated to draining 
lymph nodes within days (reviewed 
in [2,3]). Transmission itself is 
dependent upon transfer of infectious 
virus across the mucosal epithelium, 
providing access to subepithelial 
dendritic cells (DCs), macrophages, 
and/or T cells that express both 
CD4 and coreceptors CCR5 and 
CXCR4 [4,5]. Multiple mechanisms 
for mucosal HIV-1 transmission have 
been proposed (reviewed in [6]), 
however, none of these mechanisms, 
the receptors involved, nor their 
modulation by immune responses 

(adaptive and/or innate) have been 
fully defined. A broad consensus from 
the meeting was that a preventative 
vaccine must effectively target the 
earliest events in the establishment 
HIV infection. It was recognized that 
adaptive memory responses may be 
too slow to counteract such events and 
that robust mucosal protection may 
require components of both the innate 
response (active within minutes or 
hours) and adaptive effector immune 
response (humoral and/or T cell, 
active within days). On the basis of the 
major roadblocks to advances in the 
field, nine scientific priorities were 
identified to facilitate characterization 
of the correlates of mucosal protection 
(adaptive and innate) and to harness 
and develop the technology to enable 
an effective HIV-1 vaccine.

Section I: Roadblocks to Inducing 
Protective Adaptive Immunity at 
Mucosal Surfaces

1. Definition of the sequence of events 
required to establish mucosal infection. 
Understanding the mechanisms of 
HIV infection across mucosal surfaces 
is likely to be important for effective 
vaccine design and development. One 
critical set of unanswered questions 
is the relative role of cell-free versus 
infected cells in mucosal transmission 
[3,6], including whether the relative 
importance of these roles varies by 
mucosal route and the impact of 
mucosal responses on these different 
pathways. A second knowledge gap 
relates to the different potential 
mechanisms of viral transport across 
mucosal surfaces and their modulation 
by different aspects of the immune 
response [3,6]. Furthermore, there is 
still debate as to the identity, frequency, 
location, and role of the primary targets 
of infection, and the primary targets may 
vary depending on the type of mucosal 
epithelium present [3,6–8]. Priority 

should be given to understanding 
these issues as they pertain to vaccine 
development. Critical to such an 
approach will be the development of 
new tools to track initial HIV mucosal 
infection and dissemination, the 
availability of a wider panel of HIV-1 and 
R5 simian-human immunodeficiency 
virus isolates from transmitted viruses, 
and the ability to cross-reference human 
and nonhuman primate (NHP) models 
of mucosal transmission.
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2. Elucidation of acute mucosal 
sequelae that need to be prevented 
by HIV vaccines. Parallel studies of 
pathological events in acute infection 
in NHPs and humans have generated 
important insights into the subversion 
and/or destruction of the mucosal 
immune system. This destruction is 
most evident in the rapid depletion of 
CD4 T cells within the gut-associated 
lymphoid tissue during acute infection 
[9,10]. However, it has become 
abundantly clear that once mucosal 
infection has occurred, immune 
responses to infection are insufficient 
to prevent these events; what is less 
clear is whether they have any role in 
controlling mucosal viral replication, 
viral evolution, and immune cell 
depletion [9,11]. A number of 
studies have identified a paucity in 
the induction of robust HIV-specific 
mucosal immunoglobulin A (IgA)and 
IgG responses in gut-associated 
lymphoid tissue[12], and definition of 
the mechanisms leading to reduced 
responses represent an important 
priority. It is unclear whether this 
reflects the consequence of CD4 T 
cell depletion on localized humoral 
response, or whether additional 
immunosuppressive mechanisms are 
mediated by apoptotic cell products, 
regulatory T cells, or other pathways 
[13,14]. Another priority is to define 
the relationship between immune 
cell depletion, intestinal permeability 
to bacteria and bacterial products, 
cytokine induction, cell activation, 
and epithelial integrity that may 
serve to accelerate localized disease 
and systemic immune activation. 
Comparative studies of specific cellular 
and humoral mucosal responses and 
regulatory cytokines in acute infection 
and following vaccination may now 
provide new insight into how to prevent 
or ameliorate early mucosal pathogenic 
events.

3. Tools for measuring mucosal 
immune responses: Assay development, 
standardization, and validation. To 
date, the techniques for evaluating 
mucosal immune responses have been 
primarily based on assays established 
for the evaluation of systemic 
responses, where sample volume and 
cell numbers are not rate limiting. 
In NHP studies, intestinal responses 
are currently assessed by extracting 
T and B cells from mucosal biopsies. 
However, this technique poses a 

significant hurdle for human studies, 
which is further complicated when 
studying the female genital tract, where 
it is not possible to obtain multiple 
biopsies and yields from cytobrush 
samples are rate limiting. Furthermore, 
current approaches to evaluate 
mucosal cellular responses require 
fresh samples, providing a logistical 
challenge for large-scale vaccine trials. 
While significant information is known 
about specific homing receptors 
for small intestine, skin, and lymph 
nodes [15,16], specific addressins for 
colorectal and genital tissue have yet 
to be identified. Thus identification 
of specific homing markers for these 
sites would enable monitoring of 
mucosal immune response via analysis 
of cells trafficking through the systemic 
circulation. 

The lack of an accessible, reliable, 
and sensitive method for assessing 
mucosal cellular responses was 
highlighted as a significant bottleneck 
in the ability to determine the mucosal 
correlates of protection and/or viral 
control. As a consequence, little is 
known about the quality, quantity, and 
duration of mucosal T cell responses 
following infection or vaccination 
and their relation to systemic T cell 
response. Sampling and storage 
methods for acquiring mucosal T 
cells require further optimization 
and standardization to facilitate 
cross-comparison in different studies. 
Furthermore, an emphasis on the 
development of new technology using 
broad systems approaches that include 
multiparametric cytokine analysis and 
genomics [17,18] to enable single cell 
evaluation of mucosal T cell responses 
would provide significant gains in the 
ability to assess these responses.

Assessment of mucosal antibodies 
will benefit from use of high-sensitivity 
ELISA technology [19]. Additional 
advances are being realized, with the 
use of multiparameter Luminex assays 
to evaluate responses to a wide range 
of antigens using small sample volumes 
[20], surface plasmon resonance to 
evaluate kinetics and avidity of binding 
[21], and resonant acoustic profiling 
to detect antibody binding to whole 
virions [22]. However, these gains in 
technology have not been matched 
with optimization and standardization 
of mucosal sampling, processing, and 
storage techniques to detect mucosal 
vaccine humoral-induced responses. 

Of particular concern was the wide 
variability in reported detection of 
mucosal IgA responses to HIV [12], 
resulting from the influence of mucosal 
secretions, immune complexes, and 
IgG competition in different assay 
platforms. It was recommended that 
an emphasis be placed on optimizing 
assays for the detection of HIV-specific 
antibody isotypes in different mucosal 
secretions and the establishment 
of validated biomarkers and assay 
controls.

4. Defining the role of the common 
mucosal system in protection. There 
is much debate over the role of the 
common mucosal system in evoking 
protective immune responses. While 
established in mice, the commonalities 
of the mucosal immune system should 
be determined through parallel studies 
in humans and NHPs. The central 
dogma that protection is best primed 
by mucosal vaccination has not been 
fully validated. Indeed, protection 
against mucosal challenge has been 
demonstrated in NHP studies with 
parenteral vaccines (at least with 
homologous virus) and live attenuated 
vaccines [23]. Determination of 
whether such systemic immunization 
induces protection at mucosal 
surfaces, or whether more robust 
protection might be achieved with 
mucosal priming and/or boosting 
[24] was recognized as an important 
priority. New tools for tracking virus 
and infected cells [25–28] may now 
facilitate NHP studies designed to 
characterize which events in mucosal 
transmission of simian-human 
immunodeficiency virus/simian 
immunodeficiency virus infection need 
to be altered in vaccinated animals to 
provide protection. 

5. Characterization of protective 
mucosal antibody responses. While 
there is general agreement that a 
protective vaccine will require the 
induction of a humoral response, 
questions remain about the 
characteristics of such a response 
that will provide protection. The 
contribution of local versus systemic 
antibodies to mucosal protection 
remains an area of debate. 
Nevertheless, passive infusion studies 
have demonstrated protection against 
mucosal challenge [29,30]. This 
approach could be further utilized to 
establish the role of mucosal antibodies 
(and the relative importance of 
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different isotypes) in NHP mucosal 
challenge studies. It also remains 
unclear whether the induction of 
neutralizing antibodies is the only 
response contributing to robust 
protection, or whether other functional 
characteristics of non-neutralizing 
antibodies have equal or additional 
importance [30–32]. This question may 
be key in focusing vaccine development 
efforts. 

NHP challenge studies following 
passive infusion of antibodies that 
demonstrate distinct functional 
characteristics could further define 
the humoral correlates of protection 
and provide cross-validation of 
relevant in vitro assays. Therefore it 
was recommended that an emphasis 
be placed on understanding the 
contribution to mucosal protection 
of functional activities of antibodies 
including: complement fixation, 
inhibition of epithelial transcytosis, 
blockade of cell–cell transmission 
across infectious synapses, and 
antibody-dependent cell-mediated 
cytotoxicity. At present, there is 
no certainty as to which of the 
many different functional antibody 
assays might correlate with mucosal 
protection, and thus these must be 
tested in parallel with NHP and human 
protection studies, providing a way 
forward to understanding the humoral 
correlates of protection. 

6. Definition of the role of T 
cell responses in eliciting mucosal 
protection. Should the hurdles to 
studying mucosal T cell responses 
be overcome (see Priority 3), there 
are several strategically important 
questions about the role of mucosal 
T cell responses that could enhance 
the design of protective vaccines 
against mucosal HIV transmission. 
Comparison of systemic and mucosal 
responses in infected individuals 
would define whether there was 
any compartmentalization of T 
cell responses that would require 
differences in prime/boosting by 
vaccines. Definition of the correlates of 
protection and/or nonprogression in 
elite controllers (NHPs and humans) 
may provide new insight into the role 
of T cell responses in protection/
control of HIV infection. Furthermore, 
NHP studies could assess the relative 
contribution of specific mucosal 
memory versus effector cell numbers to 
the duration of protection. In addition, 

study of durable low-level localized 
infection (replication competent 
vectors, attenuated virus) could provide 
greater understanding of factors 
influencing the durability of mucosal T 
cell immunity.

Section II: Roadblocks to 
Harnessing the Innate Immune 
System to Stimulate Protective 
Immunity against HIV
The “innate” immune response is 
an evolutionarily ancient system of 
host defence, which occurs within 
minutes or hours of pathogen entry or 
vaccination. A fundamental property 
of the innate immune system is its 
ability to “sense” or recognize microbial 
or viral stimuli, and to elicit rapid-
acting defence mechanisms [33–35]. 
The innate immune system consists 
of a network of interacting cell types 
including DCs, macrophages, epithelial 
cells, endothelial cells, natural killer 
(NK) cells, NK T cells, mast cells, and 
gamma-delta T cells, which play a 
fundamental role in “sensing” microbes 
or viruses and launching innate 
defence mechanisms against them 
[33-35]. Among these cells, DCs play 
a preeminent role, not only in directly 
sensing the presence of pathogens, but 
also in orchestrating the interactions 
between the other innate immune cell 
types and facilitating the elicitation 
of antiviral defences such as secretion 
of type I interferons and defensins 
[36]. In addition to their roles in 
sensing pathogens and orchestrating 
innate immune defences, DCs also 
play a critical part in translating innate 
immunity into adaptive immunity 
[36–38]. Understanding the impact 
of innate immunity on the regulation 
of adaptive immunity, and harnessing 
such knowledge to induce optimal 
immunity to HIV, was recognized as an 
area of the highest importance. 

7. Harnessing dendritic cells, Toll-
like receptors, and non-Toll-like 
receptors in HIV vaccine development. 
The innate immune system is able 
to sense components of viruses, 
bacteria, parasites, and fungi through 
the expression of so-called pattern 
recognition receptors (PRRs), which 
are expressed by DCs and other 
cells of the innate immune system 
[33–35]. Toll-like receptors (TLRs) 
represent the most studied family of 
PRRs. However, growing evidence 
suggests that other non-TLR families 

of innate receptors, such as C-type 
lectin-like receptors [37], NOD-like 
receptors [39], and RIG-I-like receptors 
[40], also play critical roles in innate 
sensing of pathogens and induction 
of inflammatory responses. There are 
several different subpopulations of DCs 
that differ in their surface phenotype, 
function, and immune stimulatory 
potentials [36,37]. Emerging evidence 
suggests that the nature of the DC 
subtype, as well as the particular 
TLRs and/or non-TLRs triggered, 
play critical roles in modulating the 
strength, quality, and persistence of 
adaptive immune responses [37]. Thus 
specific ligands that stimulate DCs via 
TLRs or non-TLRs may represent novel 
adjuvants for vaccines against HIV 
[41]. Towards this end, a fundamental 
challenge is to understand the 
mechanisms by which DCs and PRRs 
regulate adaptive immune responses. 
In this context, the application of 
high-throughput technologies to 
evaluate changes in gene and protein 
expression and kinase profiles in 
response to TLRs and non-TLRs is 
likely to yield significant gains. Such an 
approach will offer an understanding 
of the signalling networks in the innate 
immune system that regulate the 
adaptive immune response, and this is 
likely to provide new insights into how 
to tune the adaptive immune response 
[18]. 

An equally important issue is the 
targeted delivery of antigen plus 
adjuvant to the antigen-presenting 
cell so as to optimize immunity and 
minimize systemic toxicities. Therefore 
the development of delivery systems 
that facilitate local or mucosal delivery 
of specific ligands for TLRs and 
non-TLRs may be a key step in the 
advancement of such novel adjuvants 
[42]. 

Finally, there is a growing realization 
that many of our best empirically 
derived vaccines and adjuvants 
mediate their efficacy by activating 
specific innate immune receptors. 
For example, the highly effective 
yellow fever vaccine 17D signals via 
at least four different TLRs, as well 
as RIG-I-like receptors, to elicit a 
broad spectrum of T cell responses 
[43]. This example suggests that the 
immune response generated by a live 
attenuated vaccine can be effectively 
mimicked by adjuvants composed of 
the appropriate TLR and/or non-
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TLR ligands. Furthermore, recent 
work suggests that some adjuvants can 
induce robust adaptive immunity in a 
TLR-independent manner, perhaps 
through other receptors in the innate 
immune system [44]. Therefore, 
understanding the precise roles played 
by TLRs and other non-TLRs, in the 
induction and regulation of adaptive 
immune responses is critical for the 
design of optimally effective vaccines 
against HIV. 

8. Understanding the role of natural 
antiviral factors and innate immune 
cells in mediating the interface between 
innate and adaptive immunity in 
HIV. Although much attention has 
been focused on antigen-presenting 
cells, it is now clear that other innate 
components, including antiviral 
cytokines and cells such as NK cells, 
NK T cells, and gamma-delta T cells, 
play fundamental roles in mediating 
innate immune responses. Their 
function in inducing and in regulating 
adaptive immunity against HIV are 
beginning to be understood [45–47], 
and have yet to be exploited in vaccine 
design against HIV. Furthermore, 
the potential roles of innate B-1 and 
marginal zone B cells in mediating 
rapid induction of neutralizing 
antibodies against HIV remains an 
area of interest that may provide 
additional insight. Understanding 
the role of innate immunity in the 
induction and imprinting of adaptive 
immune responses was identified 
as an important knowledge gap in 
our current understanding, and it 
was recognized that advances in this 
area might facilitate the effective 
manipulation of innate immunity to 
induce optimally effective adaptive 
immunity against HIV.

9. Understanding the role of innate 
immunity in early HIV infection. There 
is at present little knowledge about the 
early innate immune events that occur 
in response to mucosal HIV infection, 
and their potential influence on the 
ensuing adaptive immune response 
and disease progression. This issue 
was identified as an important gap 
in current understanding, and it was 
widely recognized that advances in 
this area might facilitate the rationale 
and design of interventions in acute 
infections. For example, intracellular 
innate antiviral factors such as 
APOBEC3G may be up-regulated by 
cellular activation [48]. It is unclear 

whether APOBEC3G or other innate 
factors can be harnessed to modulate 
HIV infection in the first few days 
after exposure to the virus. Therefore 
further study of how innate antiviral 
factors can curtail early events in HIV 
transmission and development of 
vaccine approaches that can induce 
and maintain such responses may 
provide new leads.

Summary, Discussion, and Final 
Recommendations 

In summary, the potential importance 
of innate and specific mucosal 
immunity in protection against HIV 
transmission is only now beginning to 
emerge. Furthermore, recent safety 
concerns over the prematurely halted 
phase IIb STEP trial of the Merck 
adenovirus-5 vectored vaccine [49] 
emphasize that studies of innate and 
adaptive mucosal immunity may be 
equally important in determining any 
potential enhancement of infection 
following vaccination. Considerable 
gains could now be made with the 
development of new technology to 
monitor the earliest events in mucosal 
infection and the application of a 
focused approach to understanding 
the contribution of localized immune 
responses in prevention and/or 
potential enhancement of localized 
mucosal HIV infection. It was 
recognized that acceleration of work 
in this area would most likely be met 
by the establishment of validated and 
standardized mucosal assay platforms 
that could facilitate cross-comparative 
NHP and human studies, coupled 
with the development of innovative 
vaccine strategies specifically targeted 
at inducing and maintaining protective 
mucosal immune responses at the 
portal of HIV entry. �

Supporting Information 
Text S1. More detailed version of the article

Found at doi:10.1371/journal.
pmed.0050081.sd001 (151 KB DOC)
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