Detection of minimal residual disease (MRD) in acute leukemias, especially for acute lymphoblastic leukemia (ALL), is not only of paramount importance for risk assessment and stratification of therapy but also for the understanding of the biological processes underlying treatment response. The mainstay of MRD detection has been the amplification of leukemia specific IgH-rearrangements by polymerase chain reaction (PCR) with a sensitivity of $10^{-4} - 10^{-5}$. Although more sensitive than FCM-MRD, molecular methods are very laborious, slower and much more expensive. In many laboratories, multiparameter flow cytometry immunophenotyping has been utilized for MRD detection as well, but detection limits in most approaches are somewhat lower than with PCR ($10^{-3} - 10^{-4}$). Flow cytometry comprises all the technical features needed for the detection of rare events, and with the implementation of new technologies the CyAn ADP LX 9 Color flow cytometer provides the technical platform to increase sensitivity, speed and reliability of FCM-MRD detection.

Materials and Methods

Setup and Compensation. Single stainings were performed for each fluorescence channel as described below with the mAbs of the Panel using a normal buffy coat. Negative controls for FL-1 SYTO® 16 unstained cells were added after the staining and shortly before acquisition. Compensation was set off and the PMT voltage for each fluorescence channel was adjusted in such a way that unstained cells were positioned in the first log-decade. CompBeads were stained with each of the mAbs as described by the manufacturer. Subsequently, negative control beads were added and the tubes were analyzed in sequence with the same PMT settings. Negative and positive beads were defined for each fluorescence channel by gating and the compensation matrix was calculated. Samples were acquired afterwards without changing or adjusting the accomplished instrument setting. A gating strategy has been developed that permits the removal of the majority of non lymphocyte events, allowing easier identification of the lymphocyte populations and their sub sets.

Cell Preparation and Staining. Heparinized blood and bone marrow specimens from patients with precursor B cell acute lymphoblastic leukemia (PBC-ALL) were collected at various time points during treatment to assess blast reduction kinetics and minimal residual disease. $7 \times 10^5 - 3 \times 10^6$ cells were stained with monoclonal antibodies using 2 µL of mAb/10^5 cells and the nucleic acid stain SYTO 16 according to the panel in Table 1. The tube was vortexed gently and incubated for 10 minutes at room temperature. Afterwards whole blood lysis was performed with FACS Lysing Solution as described by the manufacturer. After centrifugation for 5 minutes with 300 x g, cells were washed once with 5 mL of phosphate buffered saline (PBS) vortexed and pelleted again by centrifugation. After re-suspension in 0.5 mL of PBS, $3 \times 10^5 - 1 \times 10^6$ cells were acquired.

Analysis and Gating Strategy
The complete nine color analytical matrix is represented by 36 bivariate dot plots. With addition of FSC and SSC and the cell doublet discriminating parameters pulse area and pulse width of the forward scatter signal 39 bivariate dot plots are needed to visualize all parameters. Eight of these dot plots that enabled the best discrimination between residual blast cells and remaining normal B-cells in the sample were chosen for gating.
The following hierarchical gating strategy (Table 2) is used to define:
1. SYTO 16+ nucleated cells excluding doublets (Figure 1).
2. Enumeration of CD19+ cells (Figure 1).
3. Differentiation between MRD+ blast cells and normal regenerating B cells (Figure 2 and 3).
4. CD19-CD34+ - progenitor cells (Figure 2 and 3).

Table 2

<table>
<thead>
<tr>
<th>Name</th>
<th>Expression</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYTO 16+</td>
<td>CD19+</td>
<td>Yellow</td>
</tr>
<tr>
<td>CD19+</td>
<td>CD34+</td>
<td>Red</td>
</tr>
<tr>
<td>CD34+</td>
<td>CD19+</td>
<td>Blue</td>
</tr>
</tbody>
</table>

Figure 1
Gating Strategy I - Enumeration CD19+ NCs / Exclusion of doublets

Figure 2
Gating strategy II - Discrimination of MRD+ blast cells and normal B cells
ALL-BFM 2000 Protocol: d15 of treatment
Residual leukemic blast cells defined by the gate MRD+ blasts (Table 2) are depicted as red dots in Figures 2, 3 and 4. Quantification of residual blast cells is calculated according to the white blood cell count (WBC/µl) and the percentage of cells within the SYTO 16 - gate R1. On day 15 after the first two weeks of chemotherapy, 549 blasts/µL are still present in the bone marrow. After a further two weeks of treatment on day 33, three blasts/µL remained (Figure 4). Importantly, gates have not been changed or moved between day 15 and day 33 analyses.

Discussion
The sensitivity of MRD detection with FCM depends to a great extent on the number of cells acquired and the reliable characterization of the leukemia associated immunophenotype, especially the differentiation between normal regeneration, normal B cells and the residual leukemic cells. With this approach of nine colors, 12 parameters in one tube, both sensitivity and reliability of MRD detection are increased, overcoming the drawbacks of the conventional method of sequentially acquiring four-color stainings in three to four tubes. The sample does not need to be aliquoted in four separate tubes; instead, all cells of the sample can be analyzed in one tube, enabling three to four times more cells to be acquired with one staining. Furthermore, the analysis of nine colors in one tube offers the possibility to combine more parameters crucial for the detection of MRD blast cells.
References

Acknowledgments

All the FCM-MRD experiences with four colors have been made in close cooperation with the AIEOP-BFM-FCM-MRD study group headed by Michael Dworzak (Vienna, Austria), Giuseppe Basso (Padua, Italy) and Giuseppe Gaipa (Monza, Italy).

Contributors

Richard Ratei and Leonid Karawajew, University Medicine Berlin, Charité, Campus-Buch, HELIOS Klinikum Berlin, Robert-Roessle-Clinic, Lindenberger Weg 80, 13122 Berlin, Email: rratei@berlin.helios-kliniken.de

TECHNICAL TIPS

- For compensation of the FL-1 channel with SYTO 16 it is essential to add unstained cells shortly before acquisition in order to have a negative control population.

- The current approach generates large FCS files with 1 x 10^6 events acquired. This requires fast computers with a large memory; otherwise analysis will be very slow and tedious.

PRODUCT CODE

<table>
<thead>
<tr>
<th>Product Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CyAn ADP LX 9 Color</td>
<td>CY201</td>
</tr>
<tr>
<td>CD10/PE</td>
<td>R0848</td>
</tr>
<tr>
<td>CD19/PB</td>
<td>PB985</td>
</tr>
<tr>
<td>CD3/CY</td>
<td>CY696</td>
</tr>
</tbody>
</table>

For research use only – not to be used in diagnostic procedures. Other vendor products used in this application: Becton Dickinson and Invitrogen.

The protocols in this application note might deviate from the normal recommended protocol/specification guidelines that are included with the Dako product or any other non-Dako product.

Distributors in more than 50 countries

Corporate Headquarters
Denmark
+45 44 85 96 00

www.dako.com
Distributors in more than 50 countries

Australia
+61 2 9316 4633

Austria
+43 1 408 4334 50

Belgium
+32 016 38 72 20

Canada
+1 905 858 8510

Czech Republic
+420 541 42 37 10

Denmark
+45 88 85 87 56

France
+33 1 30 50 00 50

Germany
+49 40 69 69 470

Ireland
+353 91 768150

Italy
+39 02 58 078 1

Japan
+81 75 211 3655

The Netherlands
+31 20 42 11 100

Norway
+47 23 14 05 40

Poland
+48 58-661 1879

Spain
+34 93 499 05 06

Sweden
+46 08 556 20 600

Switzerland
+41 41 760 11 66

United Kingdom
+44 (0)1 353 66 99 11

United States of America
+1 805 566 6655