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Methods for numerical description and subse-
quent classification of cellular protein localization
patterns are described. Images representing the
localization patterns of 4 proteins and DNA were
obtained using fluorescence microscopy and di-
vided into distinct training and test sets. The images
were processed to remove out-of-focus and back-
ground fluorescence and 2 sets of numeric features
were generated: Zernike moments and Haralick tex-
ture features. These feature sets were used as inputs
to either a classification tree or a neural network.
Classifier performance (the average percent of each
type of image correctly classified) on previously
unseen images ranged from 63% for a classification
tree using Zernike moments to 88% for a backpropa-
gation neural network using a combination of fea-

tures from the 2 feature sets. These results demon-
strate the feasibility of applying pattern recognition
methods to subcellular localization patterns, en-
abling sets of previously unseen images from a
single class to be classified with an expected accu-
racy greater than 99%. This will provide not only a
new automated way to describe proteins, based on
localization rather than sequence, but also has poten-
tial application in the automation of microscope
functions and in the field of gene discovery. Cytom-
etry 33:366–375, 1998. r 1998 Wiley-Liss, Inc.
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The goal of the work we describe here is to develop
methods that allow the numerical description and subse-
quent classification of the patterns characteristic of subcel-
lular structures in fluorescence microscope images of
eukaryotic cells. Such data are generated on a regular basis
by labeling one or more cellular molecules with fluores-
cent dyes (most often by using antibodies against specific
proteins). As currently practiced, investigators identify
patterns based on experience or via comparison with
patterns of known proteins. The question we address is
whether these patterns can be described in a way that is
amenable to further processing by a computer, thereby
enabling automation of their analysis.

The extensive literature on pattern recognition de-
scribes its application to a wide variety of systems, but
only sporadically to automated microscope image analysis.
While the screening of Pap smears (4) has received
significant attention from the pattern recognition commu-

nity, the goal of recognizing potentially cancerous cells in
a background of normal tissue stained with hematoxylin
and eosin is inherently different from the problem of
identifying a fluorescence pattern as being from one of a
number of distinct classes.
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Over the past 10 years, a number of automated systems
for acquisition and analysis of fluorescence microscope
images have been described. These efforts have been
primarily directed towards image cytometry (15,20,22), in
which the goal is obtaining accurate measurements of the
total fluorescence of each cell, or towards automating
fluorescence in situ hybridization (24,29), in which the
goal is determining the number of fluorescence ‘‘spots’’
(chromosomes) in each cell. While some image cytometry
systems provide the ability to calculate numerical features
from the fluorescence distribution for each cell, these are
usually used to identify cell types (e.g., distinguish lym-
phoid from myeloid cells) (15,29) rather than to describe
the subcellular pattern per se. Thus, features appropriate
for describing protein localization patterns have not been
previously characterized in the context of fluorescence
microscopy.

In considering various pattern recognition applications
as a starting point for classifying protein localization
patterns, we encountered a parallel in the field of handwrit-
ten character recognition. The problems are similar, in
that while there are distinct classes of images (numbers
and letters, organelle-specific localization patterns), there
is also considerable variability within each class (individual
versions of the number ‘‘2’’ can be quite different; the
appearance of the Golgi apparatus varies from cell to cell).
Approaches that can recognize individual handwritten
characters have been described (2,17), and we therefore
modeled our initial work on character recognition, and
subsequently incorporated other approaches.

We set the following goal: to determine whether a
pattern classification system could be developed (using
feature sets not chosen with particular subcellular localiza-
tion patterns in mind) that was able to correctly classify a
set of up to 20 previously unseen images from a single
class with an expected accuracy of greater than 99%. We
describe here systems that are capable of recognizing
fluorescence patterns representing the subcellular distribu-
tion of 5 different probes that meet the desired goal. The
immediate biological implications of this work are that
automated systems may be used to classify patterns for
unknown proteins (and thereby can be used to select cell
lines showing particular subcellular patterns). In the
longer term, the work we describe demonstrates the
feasibility of creating (in an automated manner) a systemat-
ics for protein localization patterns.

MATERIALS AND METHODS
Fluorescence Microscopy

All reagents were obtained from Sigma Chemical Co. (St.
Louis, MO) unless otherwise indicated. Chinese Hamster
Ovary (CHO) cells were grown for 2–3 days in a-MEM and
10% (v/v) calf serum (Intergen Co., Purchase, NY) on
19-mm cover slips coated with 0.1% (w/v) type I collagen
in 0.1 M acetic acid. They were then fixed for 10 min with
2% paraformaldehyde in phosphate-buffered saline (PBS:
140 mM NaCl, 2.6 mM KCl, 8.1 mM Na2HPO4, 1.5 mM
KH2PO4, 0.9 mM CaCl2, 0.5 mM MgCl2, pH 7.4), permeabi-
lized for 10 min with 0.1% saponin in cytoskeletal stabiliza-

tion buffer (CSB: 137 mM NaCl, 5 mM KCl, 1.1 mM
Na2HPO4, 0.4 mM KH2PO4, 4 mM NaHCO3, 2 mM MgCl2, 2
mM EGTA, 5 mM Pipes, 0.1% glucose, pH 6.1) and
incubated for 60 min with a primary antibody. After 3
washes of 5 min each in CSB, the cells were incubated for
45 min with 12.5 µg/ml of a Cy5-conjugated secondary
antibody (Jackson Immunoresearch, West Grove, PA) and
50 µg/ml Hoechst 33258 (Molecular Probes, Inc., Eugene,
OR). The coverslips were washed 3 more times in CSB
before mounting on microscope slides using gelvatol (60
ml of 10 mM Tris, 15 g Airvol 205 (Air Products, Allen-
town, PA), 30 ml glycerol, 1 g n-propyl gallate). Images of
Cy5 and Hoechst 33258 fluorescence were acquired
separately using a Zeiss Plan-Neofluar objective (1003, 1.3
NA), and a Photometrics CH 250 cooled charge-coupled
device (512 3 382 pixels, 23 µm/pixel) mounted on a
customized Zeiss Axiovert microscope (9).

Monoclonal antibodies directed against the Golgi pro-
tein giantin (21), the lysosomal protein LAMP2 (11), the
yeast nucleolar protein NOP4 (27), and tubulin (Sigma)
were used as primary antibodies in separate labeling
experiments. Working dilutions of antibody stock solu-
tions were obtained by empirically optimizing for low
background in the presence of adequate specific signal.

Each slide was scanned for single cells that were spread
out on the coverslip (i.e., not rounded up in mitosis). Each
such field of view was acquired as a stack of 3 images in
which the focus was changed by 0.237 µm between each
slice. The image collection is available at http: //www.ste.
cmu.edu/murphylab/data.

Image Processing

The images were processed by first applying nearest
neighbor deconvolution (1) to each 3-image stack in order
to remove out of focus fluorescence from the central
image plane. The next step involved manually defining
rectangular regions of each deconvolved image that con-
tained single cells. Only the pixels from the single,
deconvolved image that were within this region were
subject to further processing steps. The background
fluorescence, defined as the most common pixel value in
the region, was subtracted from all pixels. Finally, the
images were thresholded using a constant multiple of the
background fluorescence for that image. This multiple was
4 for all probes except Hoechst 33258, for which it was
1.5. These numbers were arrived at empirically by assess-
ing the quality of images thresholded using various values.
Pixels at or above this threshold were used in subsequent
processing steps, those below the threshold were set to 0.
In order to make feature calculations insensitive to changes
in overall image brightness, each pixel value in the
thresholded image was divided by the total fluorescence in
that image.

Zernike Features

Two steps were required to convert a rectangular region
to a unit circle for calculation of Zernike moments. First,
the ‘‘center of fluorescence’’ (center of mass) for each
image was calculated and used to define the center of the
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pixel coordinate system. Second, since the Zernike polyno-
mials are defined over a circle of radius 1, the x and y
coordinates were divided by 150 (this corresponds to the
size of an average cell at the magnification used in our
experiments). Only pixels within the unit circle of the
resulting normalized image, f(x,y), were used for subse-
quent calculations. The Zernike moments,Znl, for an image
were calculated using

Znl 5
n 1 1

p o
x

o
y

V *nl (x, y) f (x, y) (1)

where x2 1 y2 # 1, 0 # l # n, n 2 l is even, and V *nl (x, y) is
the complex conjugate of a Zernike polynomial of degree
n and angular dependence l, and
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where 0 # l # n, n 2 l is even, u 5 tan21 (y/x), and
i 5 Î21.

We calculated the Zernike moments through degree 12
(Znl such that n # 12 in Eqn.1.). Since the moments
themselves are complex numbers and are sensitive to
rotation of the image, we used the magnitudes of the
moments as features (i.e.) |Znl| (17). This provided 49
descriptive features for each image.

Haralick Texture Features

Haralick’s texture features (12) were calculated using
the kharalick function of the cytometry toolbox (10) for
Khoros (version 2.1 Pro, Khoral Research, Inc., Albuquer-
que, NM; http://www.khoral.com). We did not calculate
the maximal correlation coefficient due to computational
instability and were therefore left with 13 texture features
for each image.

Feature Selection

In order to choose a subset of features from the
combined Haralick and Zernike sets described above, we
applied 2 feature selection methods to the training data.
The first was accomplished with the STEPDISC procedure
in SAS (SAS Institute, Cary, NC). We used the default
parameters of the procedure, which is an implementation
of stepwise discriminant analysis (19). One of the impor-
tant defaults is the use of stepwise selection, which starts
with an empty set of features and at each step adds to it the
best feature not currently in the set, while also allowing
features that are no longer among the best to be removed.
Wilks’ lambda statistic is used as the criterion to decide
whether a feature should be added to or removed from the
set of selected features.

The second method used a modified version of the
multiple discriminant analysis criterion (8). We selected
those features that had the largest ratio of the variance of
that feature calculated using all samples in the training set
to the sum of the variances of that feature calculated for
each class (i.e., image type) in the training set

var (f )

o
c

var (fc)

(3)

where fc contains only feature values from class c, and f
contains features from all image classes.

Classification

Before classification, the image feature data were sepa-
rated into distinct training and test sets in order to assess
performance on images not seen by the classifier during
training. Numbers of train/test images for each class were
as follows: giantin, 47/30; Hoechst, 39/30; LAMP2, 37/60;
NOP4, 25/8; tubulin, 25/26. These values were chosen so
that we would have no less than 25 images from any class
available for training purposes. After this separation, the
training data were used to calculate the mean and variance
of each feature. These values were then used to normalize
the training data to have a mean of 0 and a variance of 1 for
each feature. The same mean and variance were then used
to normalize the test data (the resulting means and
variances for the test set therefore differed somewhat from
0 and 1, respectively). The normalized training and test
sets were used with the neural network classifier, and the
non-normalized sets were used with the classification tree.

Classification trees were implemented using the tree
function of S-Plus (version 3.4 for the HP 9000, MathSoft,
Seattle, WA). The tree-generating algorithm was allowed
to run to completion using the 173-image training set, and
the performance of that tree on the 154 images in the test
set was recorded. Test images that were assigned equally
to more than 1 class were considered to be ‘‘unknown.’’

Backpropagation neural networks were implemented
using PDP11 (http://www.cnbc.cmu.edu/PDP11). Net-
works were configured with the number of inputs equal to
the number of features being used at any particular time,
20 hidden nodes (unless specified otherwise), and 5
output nodes (1 for each class of input). The learning rate
was empirically chosen to be 0.1, and the momentum was
0.9. The desired outputs of the network for each training
sample were defined as 0.9 for the node corresponding to
the input class and 0.1 for the other nodes. To minimize
any bias in the training and testing process, the aforemen-
tioned test set was divided into 8 pairs of ‘‘stop’’ and
‘‘evaluation’’ sets (each pair contained one-eighth of the
test images in the evaluation set and the remainder of the
test images in the stop set). Training of the network was
stopped when the sum of squared error for a particular
stop set reached a minimum, where the error of a
particular output node is defined as the difference be-
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tween its desired and actual output values. The perfor-
mance of the network at the stopping point was measured
using the corresponding evaluation set. This process was
repeated for the 8 pairs of stop and evaluation sets, and the
classification results combined to generate confusion matri-
ces. When measuring the performance of the network
using the evaluation data, each sample was classified as
belonging to the class corresponding to the largest of the 5
output values.

Reconstruction From Zernike Moments

As described previously (17,28), reconstructed images,
f̂ (x, y), were generated from Zernike moments using

f̂ (x, y) 5 o
n50

nmax

o
l

ZnlVnl(x, y) (4)

where 0 # l # n, n 2 l, is even, and nmax is the highest
degree of moments used (12 in our case).

RESULTS
Image Collection and Processing

We started by collecting images of CHO cells showing 5
distinct subcellular patterns. Cells were grown to subcon-
fluent levels on collagen-coated microscope coverslips,
fixed in paraformaldehyde, and permeabilized with sapo-

nin. The cells were incubated with 1 of 4 primary
antibodies (chosen to yield qualitatively different pat-
terns), and stained with Hoechst 33258 (to label the
nucleus) in parallel with a fluorescently conjugated second-
ary antibody. The antibodies used were against giantin (a
Golgi protein), LAMP2 (a lysosomal protein), tubulin (a
cytoskeletal protein), and NOP4 (an S. cerevisiae nucleolar
protein). (The antibody against NOP4 crossreacted with a
CHO protein mainly located in the nucleus, but also found
in the cytoplasm.) Coverslips were searched for fields
containing cells that were well spread and separated from
their neighbors. A stack of 3 images was then taken in
which the focus was adjusted by a small amount between
each image in the stack. Slides were processed in this way
until there were enough digital images available to train
and test the classification schemes described below. There
were 33 to 97 images available for each class of fluores-
cence distribution.

Image stacks were deconvolved to remove out of focus
fluorescence, cropped to a rectangular region containing a
single cell, corrected for background fluorescence, and
thresholded as described in Materials and Methods.

Sample images for each class of pattern are shown in
Figure 1. These images were chosen to represent their
respective classes using a feature-based method for pick-
ing a representative image (M.K. Markey, M.V. Boland, and
R.F. Murphy, submitted for publication). Prior to subse-

FIG. 1. Examples of the images used as input to the classification systems described in the text. These images have had background fluorescence
subtracted and have had all pixels below threshold set to 0. Representative images are shown for cells labeled with antibodies against giantin (A), LAMP2 (B),
NOP4 (C), tubulin (D), and with the DNA stain Hoechst 33258 (E). Scale bar 5 5 µm.
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quent feature extraction steps, the images were segre-
gated into distinct training and test sets.

Zernike Feature Extraction and Image
Reconstruction

Arguably the most important step in pattern recognition
is the appropriate choice of numbers to represent an
image (such numerical descriptors of an image are called
features). Since a long-term goal is a system that is able to
distinguish the localization of many proteins, not just the 5
patterns we used in this study, we decided to utilize 2 sets
of ‘‘general purpose’’ features rather than choosing indi-
vidual features to discriminate particular patterns.

Since cells in fluorescence images have arbitrary loca-
tion and orientation, we sought features that were invari-
ant to the translation and rotation of cells within a field of
view. This search led us first to moment invariants (14),
and then to the more appealing Zernike moments (28,30)
(Eq. 1). Although originally used in the description of
optical aberration (5,30), the Zernike polynomials, on
which the Zernike moments are based, have recently
found application in pattern recognition (2,3,16–18,25).
Based on previous work, we chose to calculate the Zernike
moments up to degree 12 (n # 12 in Eq. 1), giving us 49
numbers describing each image. These complex valued
moments are not invariant to rotation, so our final 49
features were obtained by calculating their magnitudes
(which are). The magnitudes of the 49 moments are very

different from one another, and this difference hindered
subsequent classification when using a neural network
classifier (see below). We therefore normalized the fea-
tures as described in Materials and Methods before using
them with the BPNN classifier.

Since the Zernike polynomials are an orthogonal basis
set (a set of functions for which the integral of the product
of any pair of functions is 0), it is possible to use the
Zernike moments calculated for a particular image to
reconstruct that image. In theory, reconstruction of a
continuous (i.e., not pixelated) image without error re-
quires an infinite number of Zernike moments. Since we
used only 49 moments to describe our images, it was of
interest to examine representative images reconstructed
from those moments. The reconstructions (Fig. 2) provide
some insight into the amount of information that is
included in the 49 Zernike moments used for classification
(it is clear that much of the detailed information in each
image is not preserved in the low-degree moments). Note,
in particular, that the 5 reconstructed images are visibly
different, despite representing more than 1,400 to 1
compression of the circular region defined around each
cell (70,650 pixels per 300 pixel diameter circle vs. 49
Zernike moments).

Classification Using Zernike Features

We initially sought a means of visualizing the degree of
separation of the 5 image classes in the high dimension

FIG. 2. Reconstructions of fluorescence images from Figure 1 using the first 49 Zernike moments. A: giantin. B: LAMP2. C: NOP4. D: tubulin. E: Hoechst
33258.

370 BOLAND ET AL.

Reprinted with permission of Cytometry Part A, John Wiley and Sons, Inc.



space provided by the Zernike moments. To this end, we
applied linear discriminant analysis to the features. Using
the training data and the discr function in S-Plus, we
obtained a new set of variables that are linear combina-
tions of the original features and which are generated to
maximize the resulting ratio of interclass spread to the sum
of intraclass spreads. (It is worth noting that this optimiza-
tion criteria leads to a different choice of linear combina-
tions than would be obtained by principal components
analysis, which does not consider the class of an observa-
tion and which maximizes the variation contained in
successive linear combinations.) A scatter plot of the first 2
linear discriminant variables for all observations in the
training set is shown in Figure 3. While there is some
separation of the classes using the first 2 discriminant
variables, there is also significant overlap between classes
(some of these overlaps were resolved in plots of the third
and fourth discriminant variables, data not shown). How-
ever, the limited discriminating ability of these variables
did not prove useful for classifying previously unseen
images, in that the test data set did not show similar
clustering of the classes when plotted using the same
linear transformations (data not shown).

We proceeded to use 2 methods of classification that are
able to generate more complex decision boundaries than
linear discriminant analysis. The first of these was the
classification tree (6). The goal is to divide the multidimen-
sional feature space with decision boundaries (in this case
linear and parallel to the feature axes) such that images of
each class are largely separated from each other. The
appealing characteristic of this classifier is that it generates

an interpretable tree structure as output that includes rules
for correctly recognizing each class of input. By following
a particular sample down the tree, it is also possible to
determine which features are able to discriminate that
sample from those of other classes. A classification tree
was generated using all of the training data with the default
options of the S-Plus tree function.

Once the tree was generated, the test data were applied
to it, and performance was assessed by generating a
confusion matrix from the resulting classifications (Table
1). A confusion matrix is generated by determining where
a classifier is ‘‘confused’’ about the classification of particu-
lar images. The row of a particular entry indicates the true
classification of those images, while the column represents
the class to which those images were assigned by the
classifier. Non-zero values in the off-diagonal elements of
the matrix therefore indicate mistakes made by the classi-
fier. The average performance of the classification tree
using Zernike features was 65%, where average perfor-
mance is calculated as the mean of the values along the
diagonal of the confusion matrix. The performance is
acceptable for all classes except tubulin, which was
frequently confused with LAMP2. The results suggest that
the classification tree was trained to recognize the training
data too closely (and thus, like the linear discriminant
variables above, did not perform well on previously
unseen data). Using the prune.tree function of S-Plus and
an empirically-chosen cost-complexity measure, we were
able to increase the performance of the classification tree
such that all classes were recognized at a rate greater than
50% and the average classification rate was 63% (data not
shown). Because the performance was not entirely satisfac-
tory and because the pruning required was not systematic,
we proceeded to implement a more sophisticated classi-
fier.

A classifier that is widely used and is implemented in
various commercial and freely distributed software is the
backpropagation neural network (BPNN) (23). We chose
the BPNN as our second classifier because it is able to
generate decision boundaries that are significantly more
complex than the rectilinear boundaries of the classifica-
tion tree (13). A disadvantage to the BPNN is that the ready
interpretability of the classification tree is lost. The BPNN
was implemented in PDP11 as a 3-layer network, with 49
inputs (1 for each Zernike feature), 20 hidden nodes, and 5
output nodes (1 for each class of image.) The network was
fully connected between layers.

The network was trained such that only results from the
training data set were used to modify the network weights.
To visualize the training process, the sum of squared error
between the desired value of the output nodes and the
actual value of those nodes was calculated at regular
intervals. The error for the training data was calculated
after each training epoch and the error for the stop data
was determined after every third training epoch. One
epoch of training is defined as a single pass through all of
the samples in the training data. In order to prevent over
training and therefore ‘‘memorization’’ of the training
data, training was stopped when the sum of squared error

FIG. 3. Visualization of the 5 image classes in a two-dimensional
projection of the 49-dimensional Zernike feature space. The training data
were transformed using linear discriminant analysis, and then the first 2
linear discriminant variables were plotted for each image (G, giantin; H,
Hoechst; L, LAMP2; N, NOP4; T, Tubulin).
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value for the stop data was at a minimum. At this point, the
evaluation data were applied to the network and the
output node of the network with the largest value was
defined as the classification result for each evaluation
example. Results are shown in Table 2. The average rate of
correct classification for this method, 87%, is significantly
better than the classification tree. The BPNN clearly
enhanced our ability to classify the fluorescence images
we had generated.

If this average classification rate seems inadequate, the
following should be noted. First, a random classifier (one
that is completely unable to discriminate between the
image classes) would be expected to produce an average
classification rate of only 20%. Second, it is possible to take
advantage of the nature of the samples used for imaging to
improve on this result. Specifically, if one prepares a
homogeneous sample from a single class (i.e., identically
prepared cells) and uses a majority rule classification
scheme where the sample is classified using the result
obtained for the majority of individual cells studied, it is
possible to improve the classification rate. Treating the
single-cell classifications as Bernoulli random variables
(i.e., each cell is classified correctly or it is not) results in
the following formula for the probability that the majority
classification is correct

Pmajority (n) 5 o
x5c

n

2d11

n

1
n

x2 px(1 2 p)n2x (5)

where n is the number of cells examined and p is the
probability of a correct classification of a single image. This
analysis relies on the fact that there is no class for which
the classifier achieves less than 50% correct classification.
This level of performance is easily met by the backpropaga-
tion neural network classifier. For a sample size of 10 cells
with a single-cell classification rate of 87%, a majority rule
classifier will result in a 99% correct classification rate for
the sample as a whole.

The results above utilized more than 300 images gener-
ated using 5 different labels and the acquisition of these
images therefore represents a significant investment of
time and resources. To gain some insight into how few
images per class might be needed to train a useful
classifier, we generated smaller training sets. Ten samples
per class proved to be too few as the LAMP2 images were
classified correctly only 40% of the time (data not shown),
violating the requirement for a minimum of 50% corrrect
classification discussed in the analysis surrounding Eqn. 5.
Using 15 samples per class, however, provided reasonable
results. In this case the correct classification rates were
83% for giantin, 93% for Hoechst, 62% for LAMP2, 63% for
NOP4, and 73% for tubulin, for an average rate of 75%.
These values, while not ideal for single-cell classification,
can certainly be useful with the majority rule classification
approach described above. For the localization patterns
discussed here, these results also indicate that it is possible
to train useful classifiers using less than 100 total images
for 5 classes.

Classification Using Haralick Texture Features

We also explored the use of other types of numerical
features for classification of protein localization patterns.
To do so, we chose a set of descriptive features that are
fundamentally different from the Zernike moments, the
texture features described by Haralick (12). These were
selected because they are invariant to translations and
rotations, and because they describe more intuitive as-
pects of the images (e.g., coarse versus smooth, direction-
ality of the pattern, image complexity, etc.) using statistics
of the gray-level co-occurrence matrix for each image.

Since the BPNN classifier proved more effective than the
classification tree when using the Zernike features, it was
used with the texture features. This time the network had
only 13 inputs but still had 20 hidden nodes and 5 output
nodes, all fully connected. Training was carried out as

Table 1
Confusion Matrix Generated From the Output of a Classification Tree Trained and Tested

With the Zernike Features*

True classification

Output of classification tree Number
of imagesGiantin Hoechst LAMP2 NOP4 Tubulin Unknown

Giantin 80% 3% 7% 7% 0% 3% 30
Hoechst 20% 80% 0% 0% 0% 0% 30
LAMP2 10% 3% 62% 10% 15% 0% 60
NOP4 0% 0% 25% 75% 0% 0% 8
Tubulin 0% 0% 69% 0% 27% 4% 26

*Images assigned to more than one class by the tree are included in the ‘‘Unknown’’ category. Due to rounding, rows
do not always sum to 100%.

Table 2
Confusion Matrix Generated From the Output of a

Backpropagation Neural Network Trained and Evaluated
With the Zernike Features*

True
classification

Output of neural network Number
of

imagesGiantin Hoechst LAMP2 NOP4 Tubulin

Giantin 97% 0% 3% 0% 0% 30
Hoechst 3% 93% 0% 3% 0% 30
LAMP2 12% 2% 70% 10% 7% 60
NOP4 0% 0% 0% 88% 13% 8
Tubulin 0% 0% 12% 4% 85% 26

*Due to rounding, rows do not always sum to 100%.
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before and the results are shown in Table 3. The average
performance of this feature set/classifier combination,
88%—corresponding to a predicted accuracy of 99.6% for
majority rule on 10 images—is very close to that of the
Zernike moment/BPNN approach. Note that this perfor-
mance is accomplished with far fewer features describing
each image, 13 texture features versus 49 Zernike mo-
ments.

Feature Selection and Reduction
of Classifier Complexity

In a further attempt to reduce the dimensionality of the
feature set, we chose a subset of 10 features from the
combined Zernike and Haralick features using the step-
wise discriminant analysis functionality (i.e., the STEPDISC
procedure) of SAS (SAS Institute, Cary, NC). This method
uses Wilks’ lambda statistic to iteratively determine which
variables are best able to discriminate the classes. Using
these 10 features with a BPNN containing 20 hidden nodes
resulted in correct classification rates of 97% for giantin,
93% for Hoechst, 82% for LAMP2, 88% for NOP4, and 54%
for tubulin. Although the performance on the first 4 classes
is identical to the Haralick features alone, the performance
on the tubulin images is significantly worse (81% vs. 54%)
and drops the average classification rate to 83%. We
considered the performance of the stepwise discriminant
procedure to be unsatisfactory in this case.

As an alternative, we identified a different subset using
Eqn. 3; this procedure selects those features that, on
average, widely separate the classes from each other while
at the same time keep the individual classes tightly
clustered. Although 7 of the 10 features selected using this
approach are the same ones selected using stepwise
discriminant analysis, the performance of the BPNN using
these 10 features (Table 4) was better (88% vs. 83%). This
result is significant because it indicates that it is possible to
achieve performance at least equal to the best single
feature set using a smaller number of features selected
from both feature sets.

To determine whether the Zernike and Haralick features
could be used successfully with less complex neural
networks, we measured the performance of networks
having less than 20 hidden nodes. To expedite the testing
of the various networks, we used the entire test set to both
stop training and evaluate the classification performance

rather than splitting the test set into multiple stop/evaluate
pairs as described in Materials and Methods. At no point
were test samples used to modify the network weights,
however. We found good correlation between the train/
test and train/stop/evaluate approaches where they were
used with the same training data and same number of
hidden nodes. We therefore use the 2-set approach as a
screening method when training networks under multiple
conditions. Whereas the classification performance using
the Zernike moments dropped from 87% with 20 hidden
nodes to 83% with 10 to 78% with 5, the Haralick features
maintained essentially constant performance, dropping
only from 88% at 20 hidden nodes to 87% with 5. The
Haralick result was confirmed using the more rigorous
three set train/stop/evaluate method; the average perfor-
mance was 84%. The maintenance of classification rate
with fewer hidden nodes indicates that the classification
problem is relatively ‘‘easier’’ with the Haralick features
than with the Zernike moments. The decrease in feature
number, from 49 to 13, and the decrease in the number of
required hidden units, 20 vs. 5, both help to make the
Haralick features the more desirable of the 2 feature sets
studied here.

DISCUSSION
The localization of a protein to a particular subcellular

structure or organelle is an important step in the study of
that protein. It is common for investigators to use 1 of a
number of protein tagging techniques (e.g., epitope tag-
ging, fusion with green fluorescent protein, generation of
antibodies), along with fluorescence microscopy, to visual-
ize and record the localization pattern of a protein. The
major reason for doing this is that the localization of a
protein may provide insight into its function (e.g., the
observation that the product of a gene implicated in
vacuole biogenesis is located in the nucleus suggests that it
is a transcription factor) or lend support to hypotheses
regarding its function (the observation that a protein
suspected to play a role in nuclear pore function localizes
to the nucleus supports the hypothesis). The current state
of the art in protein localization relies on individual
investigators to make reasoned conclusions regarding the
patterns obtained via the microscope. While this approach
has worked adequately, improvements need to be made to

Table 3
Confusion Matrix Generated From the Output of a

Backpropagation Neural Network Trained and Evaluated
With the Haralick Texture Features*

True
classification

Output of neural network Number
of

imagesGiantin Hoechst LAMP2 NOP4 Tubulin

Giantin 97% 0% 3% 0% 0% 30
Hoechst 3% 93% 3% 0% 0% 30
LAMP2 8% 0% 82% 8% 2% 60
NOP4 0% 0% 13% 88% 0% 8
Tubulin 4% 0% 8% 8% 81% 26

*Due to rounding, rows do not always sum to 100%.

Table 4
Confusion Matrix Generated From a Backpropagation

Neural Network Trained and Evaluated With the 10 Best
Features From the Zernike Moments and Haralick Texture

Features, as Determined Using Eq. 3*

True
classification

Output of neural network Number
of

imagesGiantin Hoechst LAMP2 NOP4 Tubulin

Giantin 97% 0% 3% 0% 0% 30
Hoechst 3% 97% 0% 0% 0% 30
LAMP2 12% 0% 83% 2% 3% 60
NOP4 0% 0% 13% 88% 0% 8
Tubulin 0% 0% 19% 4% 77% 26

*Due to rounding, rows do not always sum to 100%.
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accommodate the rapidly increasing number of proteins
that are discovered and characterized every year.

One way to improve upon the methods currently used
in describing protein localization is to quantitatively de-
scribe the patterns. It is useful to make an analogy to the
advances made in sequence analysis after quantitative
comparison methods were developed. Analysis of new
protein or nucleic acid sequences initially relied on visual
inspection of sequences for regions of identity or homol-
ogy to previously known sequences. Even after computer-
ized methods for comparing sequences were developed,
the statistical significance of matches was not always
evaluated. Currently, it is a simple matter to sequence a
gene or cDNA and send the resulting sequence to a server
that is capable of comparing it to existing sequences in a
wide variety of organisms. The results from this compari-
son can provide almost immediate insight into the possible
structure and function of the new protein. With the work
described here, we anticipate a time when visual compari-
son and analysis of protein localization patterns will be as
rare as visual analysis of protein or nucleic acid sequences.

There are a number of advantages of an automated
system for describing and classifying protein localization
patterns. First, quantitative description of images facili-
tates a standardization that is not currently possible. Just as
it is now possible to obtain a measure of homology
between 2 sequences, we anticipate measuring the homol-
ogy of the localization of 2 proteins. Second, databases can
be constructed that will allow for immediate comparison
of a new localization pattern with many existing patterns.
In this way, it will be possible to see which other proteins
localize in a manner similar to the one under study. Such
information is currently unavailable. Third, the set of
protein localization patterns obtained from classification
of all known proteins will give insight into the complexity
of protein localization mechanisms. At present, for ex-
ample, the number of distinct intracellular patterns exhib-
ited by surface receptors is unknown.

While we are not able to accomplish these ambitious
goals at present, the work we describe here contributes in
at least 2 ways towards attaining them: we describe 2
methods of numerically describing protein localization
patterns, and we demonstrate that such descriptions are
useful. Since the Zernike moments and the Haralick
texture features were used to identify the corresponding
images as being from 1 of a number of distinct classes, we
know that the numbers calculated capture useful informa-
tion. Given the large body of work in the field of pattern
recognition, it is likely that other approaches to quantita-
tive image description could be developed. Exploration of
these approaches will be one focus of future work. These
potential improvements are not necessary, however, to
begin considering and solving biological problems using
the approaches described here.

In addition to having potential utility for incorporating
localization information into molecular biology databases,
the methods we describe here may be of value in a number
of automated or ‘‘high-throughput’’ screening approaches.
First, automated methods are needed to screen the vast

number of compounds now available as potential drugs.
The classification of protein localization patterns will be of
use here as a means of identifying those cells that have
responded in a desired way to the application of a drug. It
will be possible, for instance, to automatically identify only
those cells in which the applied compound traps a surface
receptor in the ER, or in which that compound prevents
translocation of a transcription factor to the nucleus.
Second, it should be possible to automatically screen for
cells displaying a mutant phenotype. In this case, one
might ask the computer to identify those cells that have a
malformed Golgi apparatus. Third, one might screen a
population of live cells for those members that are in a
particular stage of the cell cycle, image those cells repeat-
edly until the event under study is complete, and then
begin screening again.

A last potentially interesting application of automated
localization analysis is in the area of gene discovery. By
using molecular techniques to randomly insert visualizable
tags into a wide variety of genes, it is possible to generate
localization patterns for a large number of proteins, some
known and some unknown. Once a large number of cells
has had a single protein tagged, images of protein localiza-
tion can be collected. This approach has been used to
determine localization patterns for randomly-tagged genes
from yeast using gene fusions with either LacZ (7) or
Green Fluorescent Protein (26). Automation of the pattern
analysis would potentially speed this approach, and one
can then conceive of a localization database for all ex-
pressed proteins in yeast. This is beyond current capabili-
ties for organisms with larger genomes, but screens for
proteins with particular patterns can be imagined (e.g., ER
proteins). While this may be carried out manually, the
number of patterns requiring screening in this scheme is
large and automated identification of patterns of interest is
desirable. The results we present here suggest that such an
approach is feasible.
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