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Until the second half of the 1990s, quantification of
MHC-restricted, peptide-specific T lymphocytes required
cell culture–based techniques of mononuclear cell sus-
pensions that were often laborious, cumbersome, and
prone to bias towards cellular subsets with growth advan-
tage. Initially, limiting dilution assays were used. These
assays include multiple days of culturing T lymphocytes in
the presence of antigen and antigen-presenting cells, and
the functional read-outs produced were T-cell prolifera-
tion (1) or cytolytic activity (2). However, such assays may
not accurately reflect the function and frequency of T cells
in vivo, due to selective proliferation and apoptosis that
occur over time in culture. Alternatively, assays for T-cell
activation have been developed based on the upregulation
of the early activation marker CD69 (3) and/or the pro-
duction of cytokines upon specific stimulation. The cyto-
kines thus being secreted by the T cells can be measured
in the culture supernatant by ELISA (4,5), or, after immo-
bilization, on nitrocellulose plates coated with anti-cyto-
kine mAbs (ELISPOT) (6,7). The advent of three-color flow
cytometry enabled the direct visualization of cytokine
production by individual cells (8). Visualization was
achieved either intracellularly (8,9) or on the cell surface
following retention of secreted cytokine in an affinity
matrix allowing for subsequent staining with a fluoro-
chrome-labeled mAb (10). This affinity matrix was later
replaced with a bispecific mAb, specific for a cell surface
marker (e.g., CD45) on the one hand, and for cytokine on
the other (11). Alternatively, amplification of the fluores-
cence signal by fluorescent liposomes was shown to allow
detection of surface-expressed IFN-� on IFN-�–producing
cells (12). Among the flow cytometric techniques, the first
approach, termed cytokine flow cytometry (CFC), is cur-
rently the most widely used. In all these functional assays,
single peptides (13), mixtures of peptides (14), or more
complex molecules (e.g., whole proteins or mixtures of
proteins) (9), can be used as an antigen source.

An alternative approach for the direct visualization of
antigen-specific T cells has been established by the con-
struction of multimers consisting of recombinant MHC
molecules folded with the appropriate peptides. The low
affinity and fast off-rates of MHC-peptide ligands to the
T-cell receptor (15) precluded the direct detection of
MHC-restricted, antigen-specific T cells using recombinant
MHC-peptide monomers. This problem was overcome by

the construction of soluble MHC-peptide multimers that
were able to bind specifically to the TCR with higher
affinity than the sum of the single monomeric affinities.
Initially, tetrameric complexes of Class I MHC-peptide
monomers were constructed (16), followed by the devel-
opment of Class II MHC-peptide tetramers (17). Similar
approaches have been taken to detect other types of
antigen-specific lymphocytes such as NK cell subsets (18),
NK-T lymphocytes (19,20) and TCR-��� T-cell subsets
(21). Alternatively, MHC dimers have been developed,
which are MHC-immunoglobulin fusion proteins that bind
to antigen-specific T cells via the bivalent nature of the
two binding sites available to interact with the TCR (22).

Here, we discuss the principles and practice, and sum-
marize clinical applications and relevance of antigen-spe-
cific T-cell enumeration using MHC-peptide tetramers,
CFC, and a combination of both techniques. Extensive
reviews of the methodological aspects of these assays and
their performance in relation to other assays for detection
of antigen-specific T lymphocytes have been published
elsewhere (23,24).

MHC-Peptide Tetramers

For flow cytometric enumeration of antigen-specific T
lymphocytes using tetramer technology, the HLA type of
the test individual and the specific peptide epitope(s) to
be studied must be known in advance.

Class I MHC tetramers. The Class I MHC transmem-
brane protein consists of a single heavy chain that con-
tains the complete peptide-binding groove and is stable in
soluble form when complexed with its essentially invari-
ant light chain, �2-microglobulin (16). The �2-microglobu-
lin and the recombinant Class I MHC heavy chain, on the
COOH terminus of which a recognition tag for the BirA
enzyme has been engineered, are synthesized using the
Escherichia coli expression system. Following purifica-
tion, the �2-microglobulin and heavy chains are then re-
folded in molar excess of the appropriate 8- to 10-mer
peptide. Subsequently, the peptide-loaded Class I MHC
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monomers are connected by the addition of fluoro-
chrome-labeled streptavidin; its four biotin-binding sites
result in the formation of tetrameric complexes. For the
enumeration of MHC-restricted, antigen-specific T cells,
PE is commonly preferred for its high signal to noise ratio;
alternatively, FITC or APC are used.

For flow cytometric enumeration of Class I MHC-re-
stricted CD8� T cells, PBMC suspensions have been most
commonly used, while bulk-lysed leukocyte suspensions
can also be used (25), as well as the stain-lyse-wash
method. Typically, tetramers are counterstained with
CD8, after which lymphocytes are selected by gating on
FSC and SSC, and the Class I MHC-restricted T cells are
identified within the CD8bright subset of lymphocytes (16).
As tetramers tend to bind nonspecifically to other cell
types such as monocytes, we prefer to include CD3 in this
assay in order to allow optimal identification of the T cells
on the basis of SSC versus CD3 gating (26). Using this
“T-gating” approach, CD3–,8dim NK lymphocytes can be
excluded from analysis, providing more reliable assess-
ment of the percentage of Class I MHC-restricted T cells as
a fraction of the CD8� T cells (25). Alternatively, cells
other than CD8� T lymphocytes can be excluded, by
staining them with a mAb cocktail containing, e.g., CD4
(T-helper cells), CD14 (monocytes), CD16 (NK cells), and
CD19 mAb (B cells) labeled with the same fluorochrome
(so-called “dump gating”) (27). An example of the T-
gating-based analysis is shown in Figure 1. Absolute num-
bers of Class I MHC-restricted, antigen-specific CD8� T
cells are subsequently calculated from the percentage
within the CD8� T cells and the simultaneously-obtained
absolute CD8� T-cell count (28,29).

Depending on the pathogen or disease under study, the
phase of the disease (e.g., acute versus chronic infection)
or the timing relative to the clinical intervention (e.g.,
prior to or post vaccination) and the sampling site (e.g.,
peripheral blood versus biopsy), the proportions of anti-
gen-specific CD8� T cells as measured using Class I MHC-
peptide tetramers may range from undetectable to several
tens of percentages of total CD8� T cells. The detection
limit may vary between 0.01% and 0.1% of CD8� T cells,
depending on the method for sample processing, the
tetramer used, and the number of CD8� T cells acquired
(23,25). The functional status of the tetramer-binding
CD8� T cells can be assessed by stimulating the tetramer-
labeled lymphocytes with the corresponding peptide and
measuring intracellular cytokine production, as described
below (30).

The procedure for staining T lymphocytes with MHC
dimers is very similar to that for MHC tetramers, as sum-
marized above (22).

Class II MHC tetramers. The construction of Class II
MHC-peptide tetramers has been technically more de-
manding, and successful use of these reagents was not
shown until late 1999 (16). Class II MHC molecules are
heterodimers of � and � chains. For the production of
recombinant � and � chains, insect cells such as Drosoph-
ila S2 are used (16,26). The � and � chains are cloned in
separate expression vectors; both chains are extended

with leucine zipper motifs and flexible linkers. Further-
more, a biotinylation site is added to the COOH terminus
of the � chain. Following purification, biotinylation is
performed. The leucine zippers allow stable pairing of the
soluble � and � chains, allowing loading with the appro-
priate peptide. The flexible linkers prevent steric hin-
drance when the �� heterodimers are complexed to the
fluorochrome-linked streptavidin molecule.

The use of Class II MHC-peptide tetramers to detect and
monitor antigen-specific CD4� T cells is less straightfor-
ward than the use of Class I tetramers for CD8� T cells
(27). CD4� T cells specific for particular antigens, as
detected by Class II tetramers, typically circulate at very
low frequencies (i.e., �0.01% of CD4� T cells). Such low
frequencies are below the detection limit of flow cytom-
etry (see above). In order to allow the detection of these
low frequency CD4� T cells, these T cells are stimulated
with the study antigen so that following their prolifera-
tion, their frequencies are higher and their detection is
facilitated (17). The incorporation of carboxyfluorescein
diacetate succinimidyl ester, a fluorescent dye, into the
cell surface membrane prior to culture allows the quanti-
tation of the number of cell divisions (i.e., up to 10) during
these expansion cultures. In this way, the original fre-

FIG. 1. Enumeration of CD8� T lymphocytes specific for the CMV
pp65-encoded peptide TPRVTGGGAM presented by HLA-B*0702. The
subset of CD3�,8� T cells are depicted in green, other CD3� T cells are
in red, and cells other than CD3� T cells are in gray. Inadvertently
acquired air bubbles are excluded by selecting only list mode data with a
stable rate of events per second (time gate G4, not shown). T lympho-
cytes are identified by region R1 as CD3� events with low sideward light
scatter (A). Plots B and C serve to verify the positions of the total CD8�

T-cell population and the tetrameter-binding CD8� cells, respectively.
Among the CD3� T lymphocytes, the CD8� T cells are selected by region
R2 (D). Events with low and high forward light scatter signals relative to
the major CD8� T-cell cluster, representing dead cells and cell aggregates,
respectively, are excluded by placing region R3 as shown in (E). Within
the viable single CD8� T cells (gate G3), the percentage of tetramer-
binding cells is assessed, while quadrant statistics allow the analysis of
coexpression of a fourth marker by tetramer-binding CD8� T cells (F). In
this sample, the CD8� subset constituted 68% of the CD3� T cells; 8.1%
of the CD8� T cells were specific for TPRVTGGGAM presented by
B*0702; and 69% of the latter cells coexpressed CD57. By adapting this
technique for intracellular staining, coexpression of intracellularly ex-
pressed markers such as granzyme A or perforin by the tetramer-binding
CD8� T cells can be assessed (30).
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quency of antigen-specific CD4� T cells—which are capa-
ble of dividing—in the original sample can be extrapo-
lated (17).

Cytokine Flow Cytometry

CFC is based on the detection of intracellular cytokines
with fluorochrome-conjugated mAb that occurs as a con-
sequence of short-term stimulation of leukocytes with
recall antigens (e.g., virus- or tumor-derived peptides or
proteins) and polyclonal activators such as mitogens or
inductors of intracellular signal cascades (i.e., phorbol
12-myristate 13-acetate [PMA] plus ionomycin). Normally,
unstimulated leukocytes produce little or no cytokines.
PBMC suspensions or whole blood are typically used for
this assay (31–33). An incubation time of 6 h is sufficient
for inducing cytokine production by T cells using poly-
clonal activators and peptides. The peptides must have
the appropriate format for direct loading of Class I and II
MHC molecules in order to achieve efficient activation of
CD8� and CD4� T cells, respectively. In contrast, whole
proteins need to be taken up by antigen-processing cells
for endosomal processing (34); the resulting peptides are
mainly presented by Class II MHC molecules to CD4� T
cells. However, in a minority of individuals some proteins
may enter the endogenous processing pathway so that the
derived peptides are presented by Class I MHC molecules
to CD8� T cells (35,36). However, T cells are much less
efficiently stimulated via this route of presentation than
via exogenously loaded peptides (36). Consequently, the
use of complete proteins is recommended for stimulating
CD4� T cells, but not CD8� T cells.

In order to let the cytokines accumulate in the stim-
ulated cells, protein transport inhibitors such as brefel-
din A or monensin are added after 2 h of incubation.
Following stimulation, the leukocytes are collected,
washed, and fixed in paraformaldehyde. When whole
blood has been used, simultaneous red cell lysis and
fixation can be achieved by the use of FACS Lysing
Solution (BD Biosciences, San Jose, CA). Subsequently,
the cell membranes are permeabilized using mild non-
ionic detergents to allow intracellular staining. Staining
is then performed using conjugated mAbs that have
been selected and formulated to react with antigens in
fixed and permeabilized cells. As with the tetramers, we
recommend the use of CD3 to allow thresholding on
total T cells during data acquisition, combined with the
use of CD4 and CD8 to identify the helper and cytotoxic
T cells, respectively. Alternatively, dump gating may be
used to exclude unwanted cell populations from anal-
ysis (33). The third or fourth color is then used for
cytokine detection. The analytical procedure of a sam-
ple stained with CD3, CD4, CD8 and anti-IFN-� or
mouse IgG1 isotype control mAb is shown in Figure 2.
Cytokines are commonly counterstained with CD69
mAb in order to visualize the cytokine-producing cells
as a 2D cluster (31–33). However, as we have rarely, if
at all, observed CD69–,IFN-�� T cells after peptide or
protein stimulations, we consider the use of CD69 stain-
ing redundant. Similarly, the use of isotype control mAb

is controversial (37,38), in particular when a negative
procedure control (see below) is included that fre-
quently yields similar information (T Bunde and F Kern,
unpublished results). If an isotype control mAb staining
is used, it must be appropriately matched and formu-
lated, i.e., it should approximate the anti-cytokine mAb
as much as possible (i.e., same concentration and fluo-
rochrome-to-protein ratio), except for the very antigen
binding portion (i.e., the paratope).

As with any functional assay, negative and positive pro-
cedure controls are recommended. The negative control
consists of the same blood sample stimulated with “irrel-
evant” antigen, e.g., a lysate from uninfected fibroblasts as
control for CMV-infected fibroblasts. Background cytokine
production in healthy donors is typically low (i.e., �0.02%
of CD4� or CD8� T cells) (39,40), but it may be higher in
patients with constitutively activated T cells. Neverthe-
less, very low frequencies of antigen-specific T cells can

FIG. 2. Enumeration of CD4� and CD8� T lymphocytes producing
IFN-� after 6 h stimulation with a pool of overlapping 15-mer peptides
spanning the CMV pp65 protein. In (A–C), CD4� T cells are depicted in
blue; among them, IFN-�� cells are highlighted in dark blue. CD8� T cells
are depicted in red; among them, IFN-�� cells are highlighted in violet.
Other CD3� T cells are shown in green; other cells than CD3� T lym-
phocytes are in gray. During data acquisition, a generous threshold is set
on CD3 PerCP in order to exclude most CD3– events; this threshold
should not be set too tight on the CD3� population to avoid exclusion of
CD3dim T cells that have downregulated CD3 as a consequence of their
activation. During list mode data analysis, viable T cells are identified by
region R1 as CD3� events with low sideward light scatter (A) combined
with exclusion of dead cells with low forward light scatter (region R2)
(B). The gated viable T cells are shown in (C); region R3 selects the CD4�

T cells and region R4 selects the CD8� T cells. The reactivities of CD4�

and CD8� T cells with the IgG1 isotype control mAb are shown in (D) and
(E), and the reactivities of these subsets with the anti-IFN-� mAb are
shown in (F) and (G). The markers discriminating positive from negative
events are placed on the isotype control histograms, and the proportions
of cells exceeding these thresholds are subtracted from the respective
percentages of IFN-�� cells. In this example, 0.65% of CD4� T cells and
6.48% of CD8� T cells are IFN-��. Abbreviations: APC, allophycocyanin;
FITC, fluorescein isothiocyanate; PE, phycoerythrin; PerCP, peridinyl
chlorophyllin.
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be detected if a sufficiently large list mode data set is
collected (23,39).

Clinical Applications and Relevance

Viral infections. The main application of the combi-
nation of Class I MHC-peptide tetramers, CFC, and these
techniques, has been, and still is, the analysis of antiviral
CD8� T cells. In patients infected with HIV, a dynamic
equilibrium between the levels of HIV-specific CD4� and
CD8� T cells and viral load was observed. In patients
starting on (highly active) antiretroviral therapy, HIV-spe-
cific CD8� T-cell counts increased sharply in the face of
decreasing viral load (41–44), but gradually decreased
when the viral load was efficiently controlled by the ther-
apy, indicating that the continuous presence of HIV anti-
gens is necessary to drive the proliferation of HIV-specific
CD8� T cells (41,45–48). However, high levels of HIV-
specific CD8� T cells were found to persist in patients
progressing to AIDS and in long-term nonprogressing HIV
carriers (49). Importantly, the combined use of tetramer
staining and CFC suggested that significant proportions of
HIV-specific CD8� T cells were nonfunctional, as evi-
denced by the failure of (part of) these cells to accumulate
IFN-� after stimulation with the cognate peptide (50,51).
An earlier CFC-based study had already indicated the im-
portant role of HIV-specific CD4� T cells in this respect,
being more prominently present in nonprogressing pa-
tients than in those progressing to AIDS (52). Specifically,
the loss of HIV-specific CD4� T cells was associated with
a decline in functional (i.e., IFN-�–producing) HIV-specific
CD8� T cells, increments of HIV load, and progression to
AIDS (48,51,53).

With respect to the herpesviruses, Class I MHC tetram-
ers have been used to detect and monitor virus-specific
CD8� T cells in primary and latent infections with CMV
(54–56) and EBV (57–59). In patients with AIDS and in
iatrogenically immunosuppressed patients such as organ
and blood stem cell transplant (SCT) recipients, CMV and
EBV infections may reactivate and if not controlled,
progress to CMV disease and EBV� B-lymphoproliferative
disease. The use of CFC allowed the detection of CMV-
specific CD4� T cells in the blood of CMV carriers; their
frequency was higher in HIV-infected than in noninfected
individuals (9). Even in healthy virus carriers, CMV-spe-
cific T cells showed significant fluctuations over time (60),
and circulated in significantly higher numbers than T cells
specific for herpes simplex or varicella zoster virus (61).
The combined results of these three studies indicate that
CMV presents a considerable and recurrent challenge to
the immune systems of its carriers. Tetramer-based studies
of CMV- and EBV-specific CD8� T cells have confirmed
their crucial role in keeping viral infection under control;
for both viruses, a combination of quantitative monitoring
of viral load and virus-specific CD8� T-cell reconstitution
allowed the identification of SCT recipients at high risk for
progressive viral infection and disease (62,63). The com-
bination of tetramer staining with CFC revealed nonfunc-
tional CMV-specific CD8� T cells (i.e., TNF-�– upon stim-
ulation with the cognate peptide), particularly in heavily

immunosuppressed SCT recipients (i.e., those receiving
corticosteroid therapy for acute graft-versus-host disease);
the occurrence of these nonfunctional CD8� T cells was
associated with recurrent CMV antigenemia (64) By the
same token, increased EBV loads progressing to EBV�

lymphoma were observed in HIV-infected patients with
declining CD4� T cell counts and nonfunctional (i.e.,
IFN-�–) EBV-specific CD8� T cells (65). The important role
of CMV-specific CD4� T cells was illustrated in HIV-in-
fected patients and SCT recipients. In the first group of
patients, CMV disease developed in patients without de-
tectable CMV-specific CD4� T cells, but not in those with
CMV-specific CD4� T cells, while these cells increased in
number after highly active antiretroviral therapy (66). Fur-
thermore, significant numbers of CMV-specific CD8� T
cells only appeared in the circulation of HIV-infected pa-
tients with detectable CMV-specific CD4� T cells (67).
Finally, the reconstitution of CMV-specific CD4� and
CD8� T cells was required for the resolution of active
CMV infection in allogeneic SCT recipients, while the lack
of these cells in CMV-infected patients at three months
post-SCT was associated with the development of late
CMV disease (68).

As for hepatitis, CD8� T cells specific for hepatitis B
(69–71) or C (72,73) virus were found to increase rapidly
during the acute phase of infection, whereas after its
resolution, virus-specific CD8� T cells persisted at higher
levels in patients who had cleared viremia than in those
who had not.

The studies summarized above have shown a dynamic
interaction between persisting viruses and the immune
systems of their carriers: functional virus-specific T cells of
both CD4� and CD8� subsets are required to keep these
viruses under control.

Cancer. Most studies using Class I MHC tetramers and
CFC to detect and monitor tumor-specific CD8� T cells
have been performed in patients with malignant mela-
noma. Tetramer technology allowed the detection and
isolation of HLA-A*0201–restricted, Melan-A/MART-1–spe-
cific CD8� T cells from lymph nodes containing mela-
noma metastases, but not from lymph nodes without such
metastases (74–76). In addition, these CD8� T cells were
not only detectable in the circulation of patients with
melanoma, but also in patients with vitiligo, an autoim-
mune disease characterized by the loss of epidermal me-
lanocytes, and in healthy individuals (77–79). Other mel-
anoma-associated proteins eliciting specific CD8� T-cell
responses in vivo are tyrosinase, gp100, and the MAGE
proteins (79–82). Class I MHC tetramers are also excellent
tools to monitor specific CD8� T-cell responses after vac-
cination (83–85). Although melanoma-specific CD8� T
cells, upon isolation and culture, can express high levels
of specific cytolytic activity against melanoma target cells
in vitro, their in vivo presence in melanoma lesions is not
clearly associated with regression of these lesions (76,82).
Detailed phenotypic and functional analyses of the mela-
noma-specific CD8� T cells revealed their heterogeneity
within and between patients. Some exhibited a “naive”
CD45RA��,45R0–,CCR7� phenotype lacking melanoma-
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specific reactivity; this phenotype was predominant in
healthy individuals (86,87). Others expressed an antigen-
experienced a CD45–,45R0�,CCR7� or terminally differ-
entiated CD45RA(�)/��,45R0–,CCR7– phenotype and
were able to lyse appropriately matched melanoma cells
or to secrete IFN-� in response to these cells (86–88). The
relative proportions of these subsets among melanoma-
specific CD8� T cells in patients may vary over time
(78,86). Thus, one explanation for the paradoxical pres-
ence of melanoma-specific CD8� T cells in the absence of
regression of melanoma lesions could be the anergization
of these T cells, e.g., due to the immunosuppressive en-
vironment of the tumor tissue or lack of appropriate
costimulatory molecules on the tumor cells. However, in
this context, little if anything is known about the role of
tumor-specific CD4� T cells to initiate and maintain effec-
tive antitumor CD8� T-cell responses.

CFC has also been used to assess antitumor responses in
other settings. Spontaneous CD8� T-cell reactivity against
HLA-A*0201–restricted peptides derived from WT1 or pro-
teinase 3, both overexpressed by AML blasts, was ob-
served in 8 of 15 patients with AML (89). After vaccination
of patients with adenocarcinoma using the MUC-1 pep-
tide, clear peptide-specific CD8� T cell responses were
seen (90). Specific CD4� T-cell responses were observed
in patients with multiple myeloma after vaccination using
autologous dendritic cells pulsed with autologous tumor
immunoglobulin idiotype (91).

Class II MHC-peptide tetramers. The use of Class II
MHC-peptide tetramers has been reported to detect and
monitor Class II-restricted, antigen-specific CD4� T cells
in viral (17,92) and bacterial infections (93), autoimmune
diseases (94–96), and before and after dendritic cell-based
vaccination (97). The restricted range of Class II MHC
alleles and the complicated assay formats required to de-
tect Class II-restricted, antigen-specific CD4� T cells (see
above) has thus far prevented their widespread applica-
tion.

CONCLUSIONS AND PERSPECTIVE
Flow cytometric detection of individual antigen-specific

T lymphocytes has significantly advanced, and will con-
tinue to do so. It has much increased our insight into the
interactions between viruses and tumors, and their carri-
ers. Two major approaches exist, i.e., MHC multimers
(i.e., currently mainly Class I HLA tetramers) and cytokine
flow cytometry. Both techniques can be used to monitor
and isolate antigen-specific T cells in a clinical setting.
They can even be combined to increase information.

For detection and monitoring of antigen-specific T cells
in a clinical setting, Class I HLA tetramers have advantages
and limitations. Importantly, the combination of Class I
HLA tetramer staining and stimulation with the cognate
peptide in a single assay yields information on the func-
tional status of the CD8� T cells, which is important in the
immunodeficiency setting. The advantages of Class I HLA
tetramer staining are rapidity (the assay can be completed
in 2 h) and excellent reproducibility (intra- and interassay
CVs of �10% are realistic) (98). A significant limitation in

clinical routine is that the patient’s HLA type must be
known, as well as a T-cell epitope presented in the respec-
tive context. Some applications, e.g., general surveys of
T-cell reactivity against a particular virus or protein, are
limited by the fact that the currently available synthetic
HLA molecules cover only a minority of all Class I HLA
alleles, and that cognate peptides are not known for each
HLA allele. Thus, it is practically impossible to fully com-
prehensively cover the CD8� T-cell response against a
protein by Class I HLA tetramers only. Rather, these re-
agents offer “snapshot views” of the CD8� T-cell re-
sponse, which have nevertheless thus far yielded very
useful information, as reviewed above. Unfortunately, the
number of commercial suppliers of Class I HLA tetramers
is very limited and reagent costs are high (typically US$
30–40 per test).

Cytokine flow cytometry is less rapid than Class I HLA
tetramer staining: the test takes approximately 8 h if cells
are stimulated with antigen for 6 h. The reproducibility is
good (intraassay CVs �10% and interassay CVs �25% are
realistic) (33). When protein-spanning peptide pools are
used as source of antigen, the patient’s HLA type only
needs to be known in advance when fine specificities of
the T-cell responses have to be unraveled (14,99). When
using pools of 15-mer peptides that overlap each other by
11 amino acids, both CD4� and CD8� T-cell responses
can be analyzed in a single assay. Therefore, this approach
offers a much more comprehensive view of the T-cell
response against specific proteins than Class I HLA tetram-
ers. Practical points of attention are: 1) the amino acid
sequence of the studied protein must be known; and 2) in
many cases, protein-spanning peptide pools must be man-
ufactured to order. This can be very costly depending on
the size of the protein and the synthesized amount per
peptide. Once the peptides are synthesized, protein-span-
ning peptide pools can be aliquotted and frozen at –80°C,
yielding a price per test in the range of US$ 5–10.

Both Class I HLA tetramers and cytokine flow cytom-
etry, in combination with magnetic particle technology
for cell enrichment, have considerable potential to isolate
T lymphocytes for adoptive immunotherapy (100,101).
CD8� T cells have been isolated using Class I HLA tetram-
ers from the peripheral blood of CMV-seropositive SCT
donors and administered to SCT recipients with CMV
reactivation in order to protect them against further pro-
gression of this complication (M. Cobbold, personal com-
munication). CMV-specific T cells derived from SCT do-
nors have also been adoptively transferred to recipients
with CMV reactivations not responding to antiviral ther-
apy using a scaled-up cytokine secretion assay (102).
Thus, flow cytometric detection of individual antigen-
specific T cells has great potential not only for diagnostic,
but also for therapeutic purposes.
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