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The goal of this chapter isto clarify the role of phagocytic cells (mainly neutrophils)
& medigors of both protection and dedruction.  Specificaly, the linkage between the
oxidative metabolic pathways and protection against bacterial invasion is contrasted
with the subsequent tissue damage that ensues when these processes are not proper-
ly regulated. Higtorically, tissue injury, microbid killing, and many pathogenic mech-
anisms have been ascribed to reactive oxygen intermediates (ROI). However, with
the realization of the importance of reactive nitrogen intermediates (RNI), attention
has shifted somewhat from ROI. This recent understanding of the role of nitrogen rad-
icals such as nitric oxide and peroxinitrite is compared to the oxygen radical path-
ways.

Following the discovery of antioxidants such as superoxide dismutase (SOD) by
McCord and Fridovich in 1969 (McCord and Fridovich, 1969b), most studies pub-
lished in neutrophil physiology have been related to the destructive nature of super-
oxide (O;), hydrogen peroxide (H,0,), or hydroxyl radical (OH-) with the reason-
able understanding that these reactive molecules were also the causative agentsin
tissue damage involving phagocytic cells. Neutrophils and macrophages have a
tremendous capacity for production of these molecules.

Sixty million neutrophils per minute are released into the circulation through the
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218 Reactive Oxygen and Nitrogen  Species

normal surveillance mechanism of the reticuloendothelial system. Only erythrocytes
(RBC) are produced more prolifically in the body, about 1.5 times the rate of the neu-
trophil (Erdev and Weiss, 1977). Thanks to ther longer lifespan, however, RBC out-
number neutrophils in the peripheral circulation by a factor of 103, Neutrophils are
replaced at such a high rate because of their very short half life (several hours) and

total life-span (3-4 days). A number of important factors affect the final disposition

of these neutrophils, one being a substantial increase-as much as six-to eightfold—
in phagocyte production due to stress (Boggs, 1967; Robinson and Mangalik, 1975),
and consequently a significant  number  of immaure neutrophils may be present in the
cdreulation. Because some cytokines can  delay apoptoss and thereby incresse the life-
span of neutrophils, vast quantities of these cells can accumulate at inflammatory
gtes. The mechanism for removdl of neutrophils from inflammaory stes  requires  the
neutrophils  to  progress toward an  apoptotic  demise rather than becoming necrotic  and
rdessing vast quantities of granule enzymes into surrounding tissue.  The potentid  for
tissue damage is enormous, particularly if the respiratory mechanism of these cells
has been activated. A delicate balance between manufacture of reactive oxygen rad-
icals and their removal or detoxification must be maintained. Understanding the na-
ture of this balance mechanism is the key to discerning the difference between pro-

tection and destruction in phagocytic cell function.

In this chapter the pathways of oxygen metabolism in phagocytic cells are unrav-
ded, a ae those of the padle nitrogen metabolism, and an atempt is made to show
the relationship between protective and destructive mechanisms. Of particular im-
portance is our current understanding of the role of peroxynitrite(ONOQO ™), amole-
cule formed by the union of superoxide and nitric oxide.

OXYGEN-RELATED METABOLISM

A key element in the production of ROI by phagocytes is the NADPH oxidase en-
zyme sysem, which was origindly described in  neutrophils (Babior e d., 1973). This
enzyme system is known to consist of several components based upon the h-558 cy-
tochrome, a heterodimer consisting of two subunits, gp22-phox (« unit) and gp91-
phox (B unit), aswell asa heme moiety and aflavin binding site. It isthesea and 8
units that ae missng in neutrophils of most patients with chronic granulomatous dis
eese, in which the neutrophils fal to activate the respiratory burd. Additionaly, sev-
eral other crucial components of the oxidase system must be combined to make the
enzyme system active. These include the cytosolic components known as gp47-phox
(a47 kDa protein) and gp67-phox (a 67 kDa protein), Rat-2 (a GTP-binding protein),
and an NADPH-binding protein (Cumutte et al., 1989; Parkos et al., 1987). Phago-
cytic cell oxidation pathways are thought to be quite different from those traditional-
ly associated with mitochondrial respiration, thus the terminology “phox” for oxi-
dase-related proteins—phagocyte oxidase, implying that they are somewhat unique
to phagocytic cells.

In contrast to mitochondrial respiration, where the entire pathway and all compo-
nents for respiration are contained within the mitochondria, the phagocyte oxidase
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F 1 g.1. Schematic representation of NADPH oxidase (after Segal and Nugent). One possible configura-
tion which shows the association of the « and B subunits and the relationship to cytosolic p47-phox and
p65-phox and p2 1 rac 1. Reprinted from Biological Oxidants: Generation and Injurious Consequences,
C. G. Cochrane & M. A. Gimbrone (eds.), 1992.

system must be coupled by transporting cytosolic proteins to the plasma membrane
where they are assembled into an operating complex. Figure 1 provides an overview
of one possible model of the structure and function of the neutrophil oxidase com-
plex. A series of events tekes place, the exact order of which is not known. It is thought
that the gp47-phox isfirst phosphorylated via PKC before being integrated into the
membrane complex and further phosphorylated (Rotrosen and Leto, 1990). The ex-
at function of theee twophox proteins is uncertain, & is their location. However, both
contain two SH3 domains, suggesting that one or both proteins may be linked to the
cytoskeleton rather than to the cytoplasm (Woodman et d., 1991).

Understanding the structure of the oxidase is a key to understanding the respira-
tory burs in phagocytic cells. As noted above the cytochrome in phagocytic cdls is
different from that in other mammalian cells. Firstly, the midpoint redox potential is
very low at -245 mV (thus the alternativeb_,,; nomenclature), allowing it to reduce
molecular oxygen directly to superoxide. Because the wavelength of the a band of
light absorptionis at 558 nm, the cytochrome is also referred to as cytochrome b-558
(Wood, 1987, Cross e d., 1981). The grestest concentration of the oxidase system is
in the plasma membrane, but in the membranes of specific granules a significant
amount is also present and is capable of being transferred to the membrane of the
phagocytic vacuole upon fusion, subsequent to activation of the cell.

Is the oxidase system of phagocytes unique to cells such a neutrophils and mono-
cyte/macrophages? Because O, is formed during normal mitochondrial oxidation,
clearly all mammalian cells contain the SOD enzyme system necessary to protect the
cell from damage and also from external sources of oxidants. Some lines of evidence
now sugges that other cdl types may contain ether the identicd phagocyte NADPH
oxidase system or components thereof. In most cases the activity is severdy reduced
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idese is the trigger for the respiratory burst. Although the exact role for each oxidase
component is still in doubt, there is clear evidence that the process involvestranslo-
cation of at least some components from the cytosol to the membrane. Concomitant

with thistranslocation is the activation of several second messenger signaling path-
ways, including Ca?*, diacylglycerol (DAG), GTP-binding proteins, and tyrosine ki-
nase.

Electronically Excited Species of Oxygen

Singlet Oxygen. Two forms of singlet oxygen are known: 2‘02, with a higher
energy but short lifetime, and A‘Oz, with a lower energy and a lifetime of 2 s

(Keams, 1979). For many years the phenomenon of chemiluminescence .associated
with phagocytes has been ascribed to the production of snglet oxygen, ever since the
original observation in phagocytes by Allen (Allen et al., 1972). One of the principal
mechanisms for the formation of A!Q, isthought to be viathe interaction of HOC1

with O (Long and Bielski, 1980) or via the myeloperoxidase-catalyzed oxidation of
chloide in the pressnce of excess H,O, (Harison and Schultz, 1976). Although there
are a number of possible mechanisms for reactions to form singlet oxygen, the
evidence is ill inconclusive that chemiluminescence in neutrophils actually
represents singlet oxygen production.

Oxygen Radical Formation

Superoxide. Activated neutrophils are capable of making large quantities of
superoxide. For instance, within 1 minute of stimulation with formyl-methionyl-
leucyl-phenylalanine (fMLP) in al-2 ml 1 volume, 2 X 10° neutrophils were shown

to produce 10 nM O, ", equivalent to 5-10 mM in the absence of dismutation
(Schraufstatter and Jackson, 1992). Superoxide either rapidly dismutates toH,0, (via
SOD), combines with NO- to form peroxynitrite (ONOO") (see below), or is
protonated (HO,:) in a reaction that is equally probable as SOD-catalyzed

dismutation at pH 4.8 (Behar et al., 1970), but less likely at either lower or akaline
pH. Superoxide is formed a a reult of repiration, snce from 1 to 4% of oxygen used
in the mitochondrial electron transport pathway results in the production of
superoxide (Cross, 1987) (accounting for the wide distribution of SOD).

Hydrogen Peroxide. Hydrogen peroxide is generated within neutrophils primar-
ily from superoxide dismutase-catalyzed dismutation of O} anions, plus some spon-
taneous dismutation. The general reactions are as follows:

SOD
20, + 2H* —2—— H,0, + O,

0, + 07 L » 2H,0,

In comparison with many other reactive species, H,0, itself is relatively low in
reectivity, dlowing it to remain in contact with cells and pass through cell membranes
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idese is the trigger for the respiratory burst. Although the exact role for each oxidase
component is still in doubt, there is clear evidence that the process involvestranslo-
cation of at |east some components from the cytosol to the membrane. Concomitant

with thistranslocation is the activation of several second messenger signaling path-
ways, including Ca2+ diacylglycerol (DAG), GTP-binding proteins, and tyrosine ki-

nase.

Electronically Excited Species of Oxygen

Singlet Oxygen. Two forms of singlet oxygen are known: 2‘02, with a higher
energy but short lifetime, and A‘Oz, with a lower energy and a lifetime of 2 ps

(Kearns, 1979). For many years the phenomenon of chemiluminescence associated
with phagocytes has been ascribed to the production of singlet oxygen, ever since the
original observation in phagocytes by Allen (Allen et al., 1972). One of the principal
mechanisms for the formation of A 1O2 isthought to be via the interaction of HOC1

with O; (Long and Bielski, 1980) or via the myel operoxidase-catalyzed oxidation of
chioride in the presence of excess H,O, (Harison and Schultz, 1976). Although there
are a number of possible mechanisms for reactions to form singlet oxygen, the
evidence is till inconclusive that chemiluminescence in neutrophils actualy
represents singlet oxygen production.

Oxygen Radical Formation

Superoxide. Activated neutrophils are capable of making large quantities of
superoxide. For instance, within 1 minute of stimulation with formyl-methionyl-
leucyl-phenylalanine (fMLP) in al-2 ml 1 volume, 2 X 106 neutrophils were shown
to produce 10 nM 0, , equivalent to 5-10 mM in the absence of dismutation
(Schraufstatter and Jackson, 1992). Superoxide either rapidly dismutates toH,0, (via
SOD), combines with NO- to form peroxynitrite (ONOO-) (see below), or is
protonated (HO,") in a reaction that is equally probable as SOD-catalyzed
dismutation at pH 4.8 (Behar et a., 1970), but less likely at either lower or alkaline
pH. Superoxide is formed a a reslt of respiration, snce from 1 to 4% of oxygen used
in the mitochondrial electron transport pathway results in the production of
superoxide (Cross, 1987) (accounting for the wide distribution of SOD).

Hydrogen Peroxide. Hydrogen peroxide is generated within neutrophils primar-
ily from superoxide dismutase-catalyzed dismutation of O, anions, plus some spon-
taneous dismutation. The general reactions are as follows:

SOD

20, + 2" —32 40, ,0,

0; +0; w » 2H,0,

In comparison with many other reactive species, H,O, itself is relatively low in
reactivity, dlowing it to reman in contact with cdls and pass through cell membranes
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(Frisch et al., 1983). Catalase breaks down H,0, to oxygen and water, thereby re-

moving any potential consequential damage. I nteraction with halides such as Cl- via
myel operoxidase (MPO) and detoxification via the glutathione cycle are the primary

mechanisms for remova of H,O, within phagocytes. The glutathione cycle is cou-
pled to hexose monophosphate shunt activity because glucose-6-phosphate dehydro-
genase and 6-phosphogluconate dehydrogenase reduce NADP+ to NADPH which
must be reoxidized, atask performed by the glutathione cycle (see Fig. 2). Reduced

gutathione (GSH), a vitd component in phegocytic cells can be easly messured us

ing a monobromobimane fluorescent probe (Hedley and Chow, 1994). Reduced glu-

tathione is converted to the oxidized form (GSSG) by glutathione peroxidase, and
subsequently reduced back to GSH by NADPH. This cycle is an important “ detoxi-

fication” system for excess H,0, within the cytosolic environment (Voetman and
Roos, 1980).

Hypochlorous Acid. The MPO-catalyzed reaction of H,0, with chloride pro-
duces a particularly dangerous molecule, hypochlorous acid (HOCI), which acts di-
rectly on membrane protein by inactivating sulfhydryl-dependent transporter systems
(Schraufstatter et a., 1990). Hypochlorous acid is the predominant species at acidic

pH, such as found in activated phagocytes It dso reacts with primay amines to pro-

duce monochloramine and taurine monochloramine, ZV-chloramines recognized as
very reactive oxidants. The general reaction proceeds as follows:

MPO + 2CI°

H,0, » 2HOCI + 2¢~

Neutrophils contain a very dgnificant amount of MPO, etimated to be a leat 5% of
dry cell weight (Schultz and Kaminker, 1962). This enzyme, found in the azurophilic

(primary) granules of neutrophils, has been well characterized biochemically (John-
son and Nauseef, 199 1). Other reactions of importance include those withnitrogen-
containing compounds to form chloramines. Reactions involving MPO are both nu-
merous and complex and beyond the scope of this chapter.

Hydroxyl Radical. For many yearsit has been thought that superoxide, while ex-
ercising some damaging effects on biological systems, is lessimportant in terms of
tissue injury than the more dangerous hydroxyl radicd (OH'), whose production from
H,0, isthought to occur by the iron-catalyzed Haber-Weiss reaction:

FCZ+

H,0

,0, Fe3* + OH- + OH-

Although this reaction hes, to date, provided the most accepteble explandtion for tis
sue damage in oxiddive sysems there ae some ftroubling points such as the fact that
the rae congant for this reaction is somewhat lower than tha for the competiive re-
action of ascorbic acid with iron. It has therefore been proposed that a more realistic
molecule for tissue damage is ONOO™ rather than OH- (Beckman et a., 1990) (see
below).
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Fluorescent Indicators of Intracellular Oxidation

Many assay sysems for measuring neutrophil  function have been proposed in the it
erature. Some recently developed methods allow simultaneous measurement of O
and H,0,, and NO- as well. These methods are often based upon the use of fluores-
cent probes. Five specific probes are discussed here: dichlorofluorescin diacetate, di-
hydrorhodamine 123, hydroethidine, parinaric acid, and monobromobimane. Table 1
summarizes their commonly used excitation and emission wavelengths and target
molecules.

Dichlorofluorescin Diacetate. Dichlorofluorescin diacetate (DCFH-DA) has
been utilized for H,0, measurement ever since the first application by Keston and
Brandt ( 1965 in a bulk cdl assay. The probe was later recognized as a useful one for
determination of H,0, in neutrophils (Gubitz et al., 1976; Homan-Muller et a., 1975)
and the technique extended to flow cytometry by Bass et al. (1983). Thelist of sub-
sequent publications, particularly in flow cytometry, is substantial. Dichlorofluo-
rescin diacetate has been used to study H,O, production in human neutrophils
(Robinson et a., 1994a; Himmelfarb et al., 1992; Epling et a., 1992; Stelzer and
Robinson, 1988a; Wolber et al., 1987; Seeds et a., 1985; Smith and Weidemann,
1993; Vowells et al., 1995), monocytes/macrophages (Holter et al., 1987; Lepoivre et
a., 1986), cultured neurons (Saez et al., 1987), renal epithelial cells (Scott et al.,
1988), melanocytes (Boissy et al., 1989), chondrocytes (Tiku et a., 1990), rat en-
dothelial cells (Carter et a., 1994b), human umbilical vein endothelial cells
(HUVECs) (Niu et a., 1994; Royal 1 and Ischiropoulos, 1993), and bovine aorta en-
dothelial cells (Royal1l and Ischiropoulos, 1993).

The probe works in the following manner. Dichlorofluorescin diacetate is an es-
terified molecule tha can fredy pass through the cdl membrane Once insde the cell,
DCFH-DA is deacetylated by cellular esterases to the nonfluorescent dichlorofluo-
rescin (DCFH), which is trapped within the cell by its polar nature. Dichlorofluo-
rescin is converted by intracellular oxidants such as H,0, to the green fluorescent
molecule dichlorofluorescein (DCF), a reaction significantly enhanced in the pres-
ence of peoxidase The mgor difficulties with this probe ae its tendency to lesk from
the cdl and its lower senstivity to H,O, a compaed to DHR 123 Many sudies have
used this probe successfully for intracelluar H,O, determindtion, but careful  controls
must be made to account for cell leakage.

TA B L E 1. Useful Functional Fluorescent Probes

Dye Excitation (nm) Emission (nm) Indicator
DCFH-DA 488 520 H,0,

DHR- 123 488 520 H,0,

HE 488 600 0 -
Parinaric  acid 325-360 420-450 Lipid  peroxidation

Monobromobimane 350-360 420-450 Reduced  glutathione
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Dichlorofluorescin chhloroﬂuorescm Dichlorofluorescein
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F i . 3. Dichlorofluorescin diacetate is hydrolyzed by cellular esterases to the nonfluorescent dichloro-
fluorescin, which is readily oxidized to the fluorescent dichlorofluorescein.

Dihydrorhodamine 723. Dihydrorhodamine (DHR 123) is by far the most-used
probe for measurement of intracellular H,0,. DHR 123 is oxidized directly to rho-
damine 123, which is excitable at 488 nm and emits at 5 15 nm in the same emission
range as DCF and FITC (Rothe et a., 1988). Publications describe its use in human
neutrophils (Wenisch et a., 1996; Emmendorffer et a., 1994; Tanigaki et al., 1993;
Waddell et a., 1994; Ceo et a., 1993; Demaurex et a., 1996; Smith and Weldemann,
1993; Vowells et al., 1995; Rothe et al., 1988; van Pelt et al., 1996; Wenisch et a.,
1995), human eosinophils (Elsner et a., 1995), HL60 cells (Kaffenberger and van
Beuningen, 1994), rat mast cells (Tsinkalovsky and Laerum, 1994), guinea pig neu-
trophils (Tanigaki et a., 1993), cultured chondrocytes(Hayem et al., 1994), rat brain
cells(LeBel et ., 1992), rat rena proximal tubular cells (van de Water et al., 1995),
mesangial cells (Zent et a., 1995), and L929 cells (Goossens et a., 1995). Combina
tions of DHR123 with surface receptor analysis (Elsner et al., 1994), cell viability us-
ing propidium iodide (Clancy et a., 1995), and calcium indicators (Bueb et al., 1995)
demonstrate how the probe can be used for simultaneous measurements.

DHR 123 entes the cdls as a fredy pemesble dye that is conveted to rhodamine
123 and subsequently localized in the mitochondria. The conversion from the non-
fluorescent to the fluorescent molecul e depends entirely on oxidation products and
does not require enzymatic catalysis. Once oxidized, the probe is identical to rho-
damine 123, a common laser dye. An example of the use of rhodamine 123 directly
in endothdid cdls is shown in Figure 5 One sSgnificant advantage of the DHR probe

Dihydrorhodoamine 123 Rhodamine 123

Fig. 4. Dihydrorhodamine enters the cell and is oxidized to rhodamine 123, a fluorescent molecule which
emits at 520 nm, the same as FITC. The oxidation is a result of ]-1202 production.
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Fig, 5. Mitochondria labeled with rhodamine 123. Attached viable endothelia cells were loaded with 5
wM rhodamine 123 and imaged using a Bio-Rad MRC 1024 confocal microscope.

isthat the oxidation product, rhodamine 123, remains essentially within the cell, un-
like the oxidation product DCF, which has a strong tendency to leak from cells and
requires careful controls to monitor leakage.

A number of publications have made direct comparisons between DCFH-DA and
DHR 123 (Smith and Weidemann, 1993; Vowells et a., 1995). In summary, the ad-
vantages of using the DHR 123 probe for cellular H,O, production are based upon
itsincreased sensitivity toH,0, (3-to I0-fold) and its general failure to leak from the
cells.

Hydroethidine. Hydroethidine (HE) has been proposed by Rothe and Valet (1990)
asaprobe for measurement of O, . The dye enters cells freely and isdehydrogenat-
ed to ethidium bromide (Fig. 6). A major advantage of this probe isits ability to dis-
tinguish between 0, and H,0,.As shown in Figure 7, the specificity of HE for 0,
is dgnificat. Studies have been peformed using neutrophils (Robinson e d., 19%4g
Kuypers et a., 1990; Rothe et d., 1991; Rothe and Valet, 1990) and endothelial cells
(Carter et al., 1994b), aswell as HL60 cells (Robinson et al., 1994b) and macrophages
(Kobzik et a., 1990a, b). The probe has been used extensively with NK cell assays
(Radcliff et al., 1991; Callewaert et a., 1991; Zanyk et a., 1990; Cavarec et al., 1990)
and as avital dye for identification of proliferation (Saiki et a., 1986; Bucana et a.,
1986) and hypoxic cells in tumors (Olive, 1989). Fluorescence emission occurs at
around 600 nm.

Parinaric Acid. The painaic adids ae the closest dructurd andogues of intringc
membrane lipids among current fluorescent probes (Haugland, 1992). cis-Parinaric
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Hydroethidine Ethidium Bromide

Fig. 6. Hydroethidine enters cells freely and is dehydrogenated by superoxide anion directly to ethidium
bromide. Fluorescence emission occurs around 600 nm.

acid (Fig. 8), anaturally fluorescent fatty acid, loses its fluorescence over time when
the four conjugated double bonds of the backbone chain become the target of lipid
peroxidation reactions (Hedley and Chow, 1992). Thanks to its extensive unsatura-
tion, parinaric acid is quite susceptible to oxidation. It isthis property that is utilized
in measuring lipid peroxidation. Because a325-nm ultraviolet excitation sourceisre-
quired, the use of parinaric acid is restricted to spectrofluorometry and flow cytome-
ters with helium-cadmium lasers.

Monobromobimane. Monobromobimane (Fig. 9) and monoclorobimane can be
used for the determingtion of glutathione levels within sngle cels (Hedley and Chow,
1994). Although monochlorobimane is the most specific GSH probe available be-
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F ig. 7. Celfree fluorescence generation using hydroethidine. Potassum superoxide oxidizes hy-
droethidine to ethidium bromide more efficiently than H,0,, as shown.
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Fi g. 8. Parinaric acid is a naturally fluorescent molecule whose fluorescence decreases as the conjugat-
ed double bonds are broken via oxidation.This reduction in fluorescence can be monitored kineticaly us-
ing a He-Cd laser on a flow cytometer with excitation at 325 nm and emission at 420 nm.

caie its hinding is cadyzed by glutathione Strandferase, human isoenzymes of glu-
tathione S-transferase have an unacceptably low affinity for monochlorobimane at at-

tainable physiological concentrations (Ublacker et al., 1991). For human cells (par-
ticularly neutrophils or monocytes), the most satisfactory of the probes capable of
forming fluorescent adducts with GSH via the sulfhydryl group is monobromobi-
mane. Initid trid of this probe as a tool for flow cytometry showed unacceptebly high
backgrounds; however, Hedley and Chow reexamined the probe and determined op-
timal conditions for use with human cells and flow cytometry (Hedley and Chow,

1994).

Differences between Monocytes and Neutrophils

Opinions differ as to whether neutrophils or monocytes are the more reactive. Sever-
al factorsinfluence the result, not the least of which is the method used for measur-
ing the particular species. For instance, measurements of external O, are unlikely to
provide accurate estimates of O, remaining within the cell. Several early reportsin-
dicated that zymosan-stimulated neutrophils produced several times as much reactive
species as monocytes based upon oxygen consumption (monocytes consuming
aound 40% as much as neutrophils) and H,O, production (around 20%) (Roos et d.,
1979; Reiss and Roos, 1978). It has been demonstrated that peripheral blood mono-
cytes are far less reactive to soluble activation than neutrophils (Robinson et al.,
1988). However, when these monocytes are able to bind to particulates such as bac-
teria, asignificant amount of H,0, is measurable. More recent work has shown that
monocytes activated by an identical concentration of PMA not only produce less

V4
?—C ; CHj
ety CH,S6

CH,Br

zZ—Z

Fi g. 9. Monobromobimane combines nonenzymatically with glutathione at low concentrations and is
converted from a nonfluorescent molecule to a fluorescent one when so bound. The optimal excitation for
flow cytometry is the 350-360 nm UV beam from an argon laser, dthough the 325-nm line from a heli-
um-cadmium laser will suffice. Emission is a 420-450 nm. A maximum of 10 min incubation is needed
for cell staining.
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Fig.10. Comparison between human neutrophils and monocytes of O; and H,O, capacity after stimu-
lation with 10 ng/ml PMA. Data are normalized to set neutrophil production at 100%. Monocytes produce
less H202 but more 02* than neutrophils.

H,0, than neutrophils (about a third as much), but also can produce substantially
more O, as measured intracellularly with the hydroethidine probe (unpublished ob-
srvation). These data are shown in Figure 10, normdized so that the neutrophil 0,
orH,0, production is set at 100%.

Oxygen as a Defense Mechanism-Antioxidant Systems

Peroxidases. PeroxidasesremoveH,0, via peroxidatic mechanisms (glutathione
peroxidase is an important example); a number of peroxidases are found in
phagocytic cells. In the absence of oxidants, the activity of peroxidases as such is
poor. The better known peroxidases within the phagocytic system are myeloper-
oxidase (which preferentially reacts with Cl-) in neutrophils and eosinophil
peroxidase (which preferentialy reacts with Br™) in eosinophils.

SOD. Superoxide dismutases are a group of metalloproteins/metalloenzymes pre-
sent in all respiring cells[including mammals, plants, fungi, and bacteria with the ex-
ception of some obligate anaerobes (McCord et a., 1971)] that catalyze the dismuta-
tion of O, toH,0,.

There are three isoenzymes of superoxide dismutase (SOD) in mammals, the first
of which was discovered by McCord and Fridovich in 1969 (McCord and Fridovich,
1969a). This CuZn SOD was isolated from cytoplasm, nucleus, and peroxisomes. The
second, MnSOD, discovered by Weisiger and Fridovich in 1973 (Weisiger and
Fridovich, 1973), is a cytoplasmically synthesized enzyme directed primarily toward
the mitochondria. The third isoform, EC-SOD (extracellular), was discovered by
Marklund (Marklund, 1982) and is a CuZn SOD with a positively charged binding
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domain optimized for localization in the extracellular matrix. This isoenzyme has
been shown to have paticulaly high expresson in vascular tissue (Oury e d., 1994)
and umbilical cord tissue (Sandstrom et al., 1993).

The structure of CuZn SOD in bovine erythrocytes has been determined as aho-
modimer of 16 kDa with the active site located within a cylinder B structure (Richard-
son et al., 1975), where it is well protected and is known to retain catalytic activity
during isolation procedures (Forman and Fridovich, 1973).

The mechanigm of action of SOD is that the copper ion a the active ste is reduced
by one O, molecule, then reoxidized by another in a continuing cycle (Fridovich,
1981). Thus, copper oscillates between the monovalent and divalent states. Copper-
containing SOD isinhibitable by cyanide but the Mn form is not (Haffner and Cole-
man, 1973). Azide (Misra and Fridovich, 1978) and diethyldithiocarbamate (Heikki-
laand Cohen, 1977) (which removes the Cu) are also able to inactivate SOD activity
in cdl prepaations, thus rendering the cdls susceptible to  autodestruction.  Recently
Naranayan et al. (1998) showed that environmental pollutants such asPCBs reduce
the effectiveness of antioxidant systems in human neutrophils, possibly by inactivat-
ing SOD activity. If this mechanism is confirmed, it represents the possibility that
chronic low levels of antioxidants may be capable of causing more damage than pre-
viously understood, because depletion of SOD and/or glutathione may be responsi-
ble for a subsequent increase in apoptosis.

Catalase. Catalaseis aheme protein present modly in  peroxisomes that rapidly re-
moves H,0, and reduces it to H,0 and 0; via the general reaction sequence

H,0, + ROOH » H,0 + ROH + 0,

where R is a short chain alkyl group. The rate of H,0, removal via catalase is 108
times faster than the dismutation of H,0, to water and oxygen (Forman and Fisher,

1981), meaning that it is virtually impossible to saturate catal ase activity under nor-
mal biological conditions. Phagocytic cells contain catalase, which can scavenge not

only H,0, produced within the neutrophil but alsoH,0, added exogenously to cell
preparations, because H,O, can freely move across the cell membrane (Voetman and

Roos, 1980). Being a large molecule, catalase obviously cannot penetrate the cell

membrane and its use as an antioxidant in experimental situationsis restricted toex-
tracellular locations.

Glutathione. Glutathione (GSH) is atripeptide present in most cells that actsas a
general antioxidant for the removal of H,0, viathe general reaction

H,0, + 2GH » 2H,0 + GSSG

Glutathioneis generally found in the reduced form GSH as shown in Figure 1 above
and its presence in cells affords considerable antioxidant protection. In contrast to
catalase, which islocated primarily in peroxisomes, glutathionein the cell is ubiqui-

tous. The role of the glutathione cycle has been described in neutrophils (Ohno and
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Gallin, 1985) and neutrophil apoptosis (Robinson and Narayanan, 1996), endothelial
cells (Andreoli et al., 1986; Tsan et a., 1985), hepatocytes (Keller et al., 1985),
platelets (Freedman et al., 1996), and tumor cells (Goossens et al., 1995). Evidence
that nitric oxide may play a regulatory role in neutrophils (and perhaps other cells)
has recently been demonstrated (Forslund and Sundqvist, 1995a; Nikitovic and
Holmgren, 1996; Clancy et al., 1994).

Ascorbic Acid. Although not syntheszed in mogt cdls, ascorbic acid can be pre
snt in reasonably large quantities in some tissues, where it can act & an  antioxidant
viathe following general reaction:

ascorbic acid

20, + 2H* » 2H,0, + dehydroascorbate

It should be noted that this reaction is not preferred over the dismutation of 0, by
SOD; however, in some tissues there may be sufficient ascorbate to afford reasonable
antioxidant activity.

Vitamin E. Vitamin E is generally accepted to act as an antioxidant via nonenzy-
matic reduction of polyunsaturated lipid oxide free radicals in the general reaction

vitamin E + RO- —— vitamin E- + ROH

The vitamin E- radicd must be further reduced by other reaction sequences, possibly
viaits interaction with ascorbic acid (vitamin C). Intracellular vitamin C can restore
the vitamin E radical to reduced vitamin E, thereby limiting lipid peroxidation (For-
man and Fisher, 1981).

Polyunsaturated Fats. It is posshle that polyunsaturated fats acting as a trgp may
preferentialy reduce certain ROI, preventing further damage to DNA or organelles
and subsequently more serious damage to the cell. The reactions may produce con-
jugated dienes and other molecul es that can themsel ves cause damage under certain
conditions. The general reaction sequence for lipid peroxidation would be

+ H+

RH + O; + OH-: ROOH + H,0

It has been suggested that O, in particular can cause a chain reaction whereby fur-
ther lipid peroxidation takes place (Thomas et a., 1978).

Oxygen as a Pathogenic Molecule

Superoxideis produced in significant quantities in many cells; as previously stated,
from 1 to 4% of al oxygen consumed in the mitochondrial electron transport chain
results in production of 0y (Cross, 1987). As discussed above, activated phagocytes
can produce a vaiety of oxidants tha may be found both within the phagocytic cdls
and reesed into the extracdlular milieu. After neutrophils have been recruited to ap-
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proach, roll, and attach to the vascular endothelium, they transmigrate to the source
of inflammation. Once at the site, they usually become further activated, producing
additional oxidants. Any neutrophil breakdown releases large quantities of enzymes,
with the potential for considerable tissue damage. There are several clear-cut situa-
tions in which activated neutrophils cause classic tissue damage, predominantly
through the production of reactive oxygen species.

One such caseis that of complement-mediated lung injury; invasive neutrophils
have been shown to be present in high numbers where severe tissue damage occurs
(Till et a., 1982). Similar damage has been observed in a model of immune complex
damage to the lung. In this modd, a large neutrophil infiltrate subsequent to intratra-
cheal indillation of IgG antibody to bovine serum abumin is thought to be the cause
of significant tissue injury (Johnson and Ward, 1974). In terms of free radical gener-
dion, it has been shown that dveolar macrophages from patients with asthma have a
higher rate of production of superoxide (Jarjour and Calhoun, 1994).

NITROGEN-RELATED METABOLISM

The discovery of nitric oxide is attributed to Joseph Priestley, a clergyman and part-
time chemist, who called his find “nitrous air.” When exposed to iron, this gas was
conveted to nitrous oxide (laughing ges, reviewed by Gilbet, 198 1). The year of this
discovery was 1772, but more than 200 years were to pass before the realization that
nitric oxide has a crucial role to play in physiological systems.

The chemistry of nitrogen monoxide (NO) has been elucidated over the past sev-
eral years. The most studied molecule has been the radical nitric oxide (NO-); how-
ever, there are several redox states of NO, including nitrosonium cation (NO+), nitric
oxide (NO-), and nitroxyl anion (NO-), not dissimilar to the well-known states of
oxygen (dioxygen) (O,), namely, superoxide (O, ) and hydrogen peroxide (H,0,).
NO:-itself has the lowest molecular weight of any known mammalian secretory prod-
uct (Nathan, 1992). The semind discovery that L-arginine was converted to nitric ox-
ide by macrophages and that this was involved in tumoricidal activity (Hibbset al.,
1987) created an entirely new area of research. Literally tens of thousands of reports
have surfaced in the past 10 years associating nitrogen-related metabolites with what
was previously an exclusive domain of oxygen metabolism.

Production and Properties of Nitric Oxide

Production. Nitric oxideis produced by oxidation of one of the terminal nitrogens
on arginine via nitric oxide synthase, producing N-hydroxyarginine, then citrulline,
and finally nitric oxide. Each molecule of nitric oxide produced requires one arginine,
two oxygens, and 1.5 NADPHs, involving an overall reduction of five electrons.
There ae three didtinct isoforms of the synthese enzyme two of which have been
termed constitutive: one from endothelia cells (ECnos-Type I11) and one from neu-
ronal cels (NCnos-Type |) (Bredt et a., 1991). The constitutive form (¢NOS) is
Ca®*-dependent, appears to be mediated by camodulin (Pollock e d., 199 1), requires
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the presence of cofators such as terahydrobiopterin for  activity (Forstermann e d.,
1991), and is believed to be located on the cytoplasmic face of the cell membrane
(Knowles and Moncada, 1992). The third isoform, calcium-independent and in-
ducible (iNOS—Type I1), istightly bound to calmodulin (Nathan and Xie, 1994) and
is found in most cells in the body (Stuehr and Griffith, 1992; Nussler and Billiar,
1993).

Nitric oxide (NO-) is formed through a five-electron oxidation of L-arginine via
the action of nitric oxide synthase, NADPH, and tetrahydrobiopterin (Stuehr and
Griffith, 1992), which proceeds from the hydroxylation of L-arginine to form N®-hy-
droxy-L-arginine through subsequent hydrolysis to L-citrulline and hydroxylamine
with further oxidation to nitric oxide:

.. NOS - NOS -
L-arginine + NADPH ————— N“-OH-L-arginine ———— L-citrulline

catalase
+ NH,0H + H,0,————— NO- + 2H,0 + H+

L-Arg + 30, + 1.5 NADPH + H, -biopterin —————— NO- + L-citrulline

+ 15 NADP* + H,-biopterin + 2H,0 + H,0,

Hydroxylamine is oxidized by a catalase-like activity to form NO-, utilizing H,0, as
a substrate (Stuehr and Griffith, 1992). It is known that NO- reacts rapidly with both
oxyhemoglobin and deoxyhemoglobin with afinal product of nitrate (Wennmalm et
a., 1992):

NO- + O,Hb NO, + Hb*

As discussed below, the reaction of NO- with superoxide produces nitrates by way
of the peroxynitrite free radical intermediate (Knowles and Moncada, 1992):

NO- +Qx ONOO~

NO,

or, in the absence of superoxide and hemoglobin at pH 7.4, NO- can utilize other re-
active species of oxygen such as singlet oxygen (Knowles and Moncada, 1992):

NO- + '0, ————— N,0, ———— NO, + NO;

Thusit ishighly likely that NO- and O; are very closely interactive during the in-
flammatory response and that the modulation of O by NO-ismost likely animpor-
tant mechanism for regulation of ROI production.

Physiological Properties. At dadad temperatre and pressre, pure nitric  Ox-
ide gas is approximately 40 mM, whereas a saturated aqueous solution is 1.9 mM;
however, physiological levels of NO- range from 10 nM (necessary to cause vasodi-
lation) to as high as I-10 wM around activated macrophages (Beckman, 1995). Ni-
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tric oxides have potentially extensive half-livesin tissue, aslong as 17 h for a10 nM
concentration and around 11 min for a 1 wM concentration of NO- (Beckman and
Tsai, 1994).

One of the earlier effects observed for NO- was that it prevented neutrophil ag-
gregation (Kubes et a., 1991; McCall et al., 1988). Thus nitric oxide could regulate
the buildup of inflammatory cells and reduce potential tissue damage. The mecha-
nism of leukocyte recruitment is well understood. Leukocyte adhesion to endothelial
cells is primarily mediated by the B-integrin glycoprotein complex on neutrophils
(Tonnesen, 1989). NO- plays a role in P-selectin—dependent leukocyte rolling, for
N“-nitro-L-arginine methyl ester pretreatment of rats with L-NAME caused increased
leukocyte rolling (Davenpeck et a., 1994). It is known that once an inflammatory
dae is sSgnded (via a chemoatractant, for instance), neutrophils dow down and gen
tly adhere to the wall of the blood vessel viaL-selectin. Because the adherenceis of
low affinity, the effect isarolling along the endothelial layer. The L-selectin (0N neu-
trophils) binding viaE(ELAM- 1)- and P(CD62)-selectins (on endothelial cells) ises-
sentially intermittent until the neutrophil approaches sufficiently close to the source
of the inflanmatory mediator. At this point, the neutrophil dows and then adheres to
the endothelid suface via adheson glycoproteins (CD 1 1/CD 18) on neutrophils and
their ligands (ICAM- 1) on endotheid cels Now the neutrophil migrates through the
microvessel wall, a process that takes several minutes. Thus the regulatory role that
NO- appears to play in expression of P-selectin is physiologically very significant,
with the implication that NO- acts as a homeostatic regul ator of neutrophil-endothe-
lia interactions (Beckman, 1995).

Other physiological effects of nitric oxide on neutrophilsinclude direct inhibition
of superoxide production, possibly by direct action on the NADPH oxidase (Clancy
et d., 1992), providing additional evidence of protection against oxidative injury. In
asimilar manner, nitric oxide has been shown to act against mast cells, demonstrat-
ing adiminution of mast cell reactivity. It has been shown that exvenous addition of
NO- viathe NO- producer nitroprusside decreased the amount of histamine released
by mast cells (Salvemini et al., 199 1) aswell as the amount of platelet activating fac-
tor produced by them (Hogaboam et al., 1993).

Peroxynitrite

Peroxynitrite (ONOO™) is formed from a radical-radical reaction between O, and
NO- at a diffusion-limited rate (k = 6.7 X 10°M~ s~ !) (Huie and Padmaja, 1993).
It has been known for many years that superoxide and nitric oxide could combine to
form peroxynitrite, as well as the conditions under which thiswill occur (Blough and
Zafiriou, 1985). Making accurate measurements of ONOO™ in biological systems,
however, proved more difficult. Beckman et al. (1990) have determined many of the
properties of peroxynitrite. The pK is 7.49 at 37°C, and once protonated it rapidly
decomposes with a half-life of 1.9 s. Macrophages are capable of producing at |east
Immol/min of peroxynitrite; and the effects on bacterial survival are not altered by
mannitol, ethanol, or benzoate, but are enhanced by dimethyl sulfoxide or deferox-
amine (Zhu et a., 1992).
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When ONOO ~is protonated, the resultant peroxynitrous acid (ONOOH) decom-
poses to several toxic species with reactivity similar to hydroxyl radical and nitrogen
dioxide (Volk et a., 1995; Radi et d., 1991; Beckman et a., 1990; Ischiropoulos et
al., 1992a,b). Peroxynitrite has al so been shown to have high bactericidal capacity in
macrophages (Zhu et a., 1992; Ischiropoulos et a., 1992a,b) and to replace the ac-
tive site of CuZn superoxide dismutase, removing its dismutation capacity for super-
oxide anion by blocking the O, binding site (Beckman et a., 1992; Ischiropoul os et
al., 1992a,b). DNA strand breakage (Inoue and Kawanishi, 1995; Szabo et al., 1996)
demonstrated in macrophages (Szabo et al., 1996), smooth muscle (McCauley and
Hartmann, 1984; Begley et al., 1985), and thymocytes (Salgo et al., 1995) has been
attributed to ONOO . Furthermore, ONOO ™~ can directly oxidize sulkydryl groups
such as cysteine and BSA at physiological pH (7.4) at rates 1000 times faster than
H,0, (Radi et d., 1991a).

The stuation is further complicated by the fact that transtion metds can catdyze
ONOO™ to form OH- (hydroxyl anion) plus nitronium ion (NO,+), which can sub-
sequently nitrate  protein  tyrosine residues to produce 3-nitrotyrosine in a reaction ca-
ayzed by SOD (Beckman et al., 1992), whose normal role is to dismutate O, .

It has been suggested that the toxicity of either the O, or NO- radical is signifi-
cantly enhanced when the two combine to form ONOO ™~ (Beckman et a., 1990). Per-
oxynitrite has been shown to exhibit strong activity with a number of biological
molecules, and a substantial amount of evidence demonstrates that ONOO~ is con-
Sderebly more reactive then NO-. The drong oxidizing capability has been shown to
act on peroxidation of lipids in the absence of iron (Rubbo et a., 1994; Radi et a.,
19 1 @), casse formation of maondiddehyde and conjugated dienes during lipid per-
oxidation (Radi et a., 199 Ib), and also act directly on carbohydrates (Beckman et al.,
1990).

Peroxynitrite inhibits pulmonary al -proteinase inhibitor and therefore oxidizes
critical methionine residues in the active site of the enzyme (Moreno and Pryor,
1992). Peroxynitriteis also responsible for the oxidation of arachidonic acid and for-
mation of F2-isoprostanes via oxidation of low-density lipoproteins (Moore et a.,
1995) and causes inhibition of mitochondrial respiratory chain enzymes, including
cytosolic aconitase (Radi et a., 1994; Hausladen and Fridovich, 1994).

Deferoxamine and glutathione are scavengers of peroxynitrite, whereas H,0, has
been shown to prolong its half-life (Alvarez et a., 1995). It islikely that most of the
damaging effects against mitochondria result from the activity of peroxynitrite, not
OH- or other radicals, for antioxidants against O, or OH: provide little protection.

Under certain conditions the NO-/Q; interaction may behave as a significant an-
tioxidant mechanism for the detoxification of O; . What is clear is that the most im-
portant criteriafor the role of the NQ- and O, combination may be the relative flux-
es of each molecule and the nature of the tissue in which they are formed.

Fluorescent Indicators of Excited Nitrogen Species

Some confusion exists as to what particular fluorescent probes actually measure. A
number of reportsin the literature claim to measure one or another oxidant, when in
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fact thereis no clear evidence as to what molecule is actually being measured. This

problem is witnessed by the vast quantity of <udies described in the early 1990s pur-
porting to measure nitric oxide, but in reality measuring an accumulation of nitrites.

This has led many investigators to the concluson tha NQ- was indeed produced and

was the key biologicd species. Many publications have assumed that the species con-

tributing the biological effect wasN(Q- when it could well have been, and most prob-
ably was, a combination of excited molecules. Regardless, the conclusion has been
drawn on many occasions that NO- was the key to the biological mystery being un-
raveled. In a similar manner, NO- and ONOQ~ measurements using fluorescent
probes may have resulted in the same problem of crossreactivity already observed
with probes for Oy and H,0,.

Dihydrorhodamine 123. DHR 123 has recently become a popular probe for mea
suring peroxynitrite. Haddad et al. (1994) have used DHR 123 to measure peroxyni-
trite production, claiming that the simultaneous generation of O, and NO- resulted
in the oxidation of DHR 123 to rhodamine 123. They claim further that DHR 123 is
not oxidized by NO-, 0,,or H,0, alone (Kim et al., 1996; Haddad et d., 1994).
Clearly there are contradictory publications on the nature and use of certain fluores-
cent probes, and the choice of such probes depends entirdy on the hiologicd system
in question. Many studies have used DHR 123 as a direct measure of peroxynitrite
(Szabo et al., 1995); for cases involving noncellular systems where highly defined re-
ations can be dudied, the efficacy of the probe is acceptable In one such controlled
system the authors concluded that in the presence of oxygen, nitric oxide induces a
relatively slow oxidation of dihydrorhodamine owing to the formation of nitrogen
dioxide and consequently that dihydrorhodamine was a sendtive and effident trap  for
peroxynitrite (Miles et al., 1996; Kooy et al., 1994).

When using these probes for more complex biological systems such as cell sus-
pensions or for in vivo use, care must be exercised in drawing and interpreting con-
clusions from the data. Experiments such asinjecting DHR 123 directly into rats and
measuring subsequent plasma levels of rhodamine 123 spectrofluorometrically are
not draghtfoward cases of cause and efect. In tha indance the conclusions that the
resulting measurement was a direct measure of peroxynitrite (Szabo et al., 1995)
must be interpreted with grest caution, and in the case of peroxynitrite measurements,
are only relative to NOS-inhibitable changes in fluorescence as discussed by Szabo
(Szabo et d., 1995).

Dichlorofluorescin Diacetate. Evidence exists that DCFH-DA under some cir-
cumstances may actually measure NO- in addition toH,0,. Such evidence includes
the observation for human neutrophils that a calmodulin inhibitor (W-13) inhibits
O, production as measured by cytochrome ¢ and nitroblue tetrazolium assays but en-
hances the formation of fluorescent DCF (Rao et al., 1992). Furthermore, this reac-
tion was inhibitable by NMMA (N“-monomethyl-L-arginine), an L-arginine andogue
that inhibits production of NO-. Addtionaly, it was demondrated that pure NO- g
could directly oxidize DCFH to the fluorescent DCF (Rao et al., 1992).

It has also been observed that DCFH-DA-loaded neutrophils incubated with a
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Fi Q. 1. The change in fluorescence over time &fter a controlled UV flash (360 nm excitation) on a smal
population of neutrophils previousy loaded with DCFH-DA. Neutrophils attached to coverdlips coated
with polylysine were loaded with DCFH-DA (20 M) and incubated at 37°C on the heated stage of a Bio-
Rad MRC 1024 confocal microscope for 20 min to hydrolyze the probe. Cells were then incubated with
potassium nitrosylpentachlororuthenate (PNPCR, a “caged nitric oxide” compound). Control cells not
flashed with UV light but given equal exposure to 488-nm excitation demonstrated no fluorescence shift.
Neither did cells incubated with DCFH-DA aone and given the same UV flash.

caged nitric oxide showed an increase in DCF fluorescence after the cage was re-
leased by ultraviolet light. In these (unpublished) studiesit appears that the DCFH-
DA probe was measuring the released NO-, for the cells were otherwise not stimu-
lated to produce reactive oxygen species (Fig. 11). Ultraviolet light alone did not
appear to change the fluorescent nature of the DCFH probe.

Nitric Oxide Production in Neutrophils

Although there is no doubt that neutrophils can produce staggering quantities of  oxy-
gen radicals, their ability to produce nitric oxide has been disputed. Before the bio-
logicd propeties of nitric oxide had been ducidated, repots of the impact of ra neu-
trophils on relaxation of smooth muscle (Rimele et al., 1988), elevated cGMP levels
(Leeet al.,1988), and platel et antiagreggation factor (McCall et al., 1989) would sug-
gest involvement of NO- based upon present-day knowledge. Subsequently, the “fac-
tor” present in these neutrophils was shown to be nitric oxide (Schmidt et al., 1989;
Wright e d., 1989). The controversy, however, has continued.

The quesion a to whether the presence of nitrites indicates intracdlular NO- pro-
duction or results from dtenative meabolic pathways has been addressed by a num
ber of groups. Klebanoff and Nathan (1993) measured nitrite production in human
neutrophilsin the presence of azide and catalase; nitrite production was unaffected
by addition of ether SOD or monomethylarginine. When simulated  neutrophils  were
replaced with the H,0,-generating system glucose-glucose oxidase, nitrite was also
produced, leading these athors to conclude that nitrite production did not reflect ni-
tric oxide synthase activity, but rather the catal ase-catalyzed conversion of azide in
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the presence of H,O, generated by stimulated neutrophils. Another study by Padgett
and Pruett (1995) found that rat, mouse, and human neutrophils were able to pro-
duce very small amounts of nitrite, far less than would be required for antimicrobial
activity. They conclude that the small amount of NO- produced by these cells may
be related to intercellular signaling rather than playing a role as a defense mecha-
nism.

These data are contrasted with a significant literature confirming the presence of
both |NOS and subsequent production of significant amounts of NO-. Identification
of INOS expression has been confirmed in human neutrophils by measuring reverse
transcription polymerase chain reaction (RT-PCR) products (Kolls et a., 1994; Cook
et al., 1994; Evans et a., 1996). In one neutrophil sudy, PCR (polymerase chain re-
action) products to both the endothelial constitutive (756 bp) and neuronal constitu-
tive (629 bp) NOS isoforms were identified (Chen and Mehta, 1996). Confirmation
d iINOS or NO- production has been by Southern blot (Chen and Mehta, 1996), spec-
trophotometric measurement of nitric oxide-dependent methemoglobin formation
from oxyhemoglobin (Larfars and Gyllenhamrnar, 1995), and antibodies against
iNOS in rat neutrophils (Clark et a., 1996). Detailed immunohistochemistry with a
specific anti-nitrotyrosine antibody showed intense staining in both macrophages and
neutrophilsin mouse lung (Akaike et al., 1996) and rat macrophages and neutrophils
(Goldman et a., 1996), and reports of the conversion of 3H-arginine to 3H-citrulline
in human monocytes and neutrophils (Laffi et al., 1995) have been published.

Secondary evidence exists for the effect of NOS inhibitors on neutrophil function.
For example, NOS inhibition attenuated chemotaxis of both unstimulated and primed
neutrophils, suggesting a role for NQ- synthess in  neutrophil emigration (Wildhirt et
al., 1995) as well as in monocyte chemotaxis (Belenky et al., 1993), and exogenous
NO- has been shown to induce chemotactic locomotion in human neutrophils (Beau-
vaiset al., 1995). Other evidence of NO- production is based upon nitrite production
alone (Ahmed and Weidemann, 1996; Dias-Da-Motta et al., 1996; Carreras et al.,
19943; Biswas et al., 1993) and chemiluminescence (Forslund and Sundgvist, 1995za;
Catz et d., 1995; Carreras et a., 1994b).

Wright et al. (1989) showed that human neutrophils were able to generate nitric
oxide at arate of 1.8 nmol/2 X 10° cells/30 min. Direct evidence of NO- through de-
tection in the gas phase of the specific chemiluminescence resulting from the reac-
tion of nitric oxide with ozone showed categorically that neutrophils produce NO-.

It is becoming increasingly clear that NO-, present either exogenously or intracel-
lularly, exerts serious influence on the physiology of neutrophil function. Production
of O] isreduced by the direct effects of extracellular NO- on the neutrophil mem-
brane-bound oxidase (Forslund and Sundqvist, 1995b). Augmentation of bacterial
phagocytoss by human neutrophils in the pressnce of vL-arginine (but not D-arginine
or glycine) has been demonstrated (Moffat et al., 1996). NO- has been shown to re-
duce neutrophil adherence (Clancy et d., 1995; Egdell et a., 1994; McCall et .,
1988) and cause depletion in intracellular glutathione (Clancy et a., 1994), but not to
affect neutrophil-mediated killing by fMLP-activated rat neutrophils (Wagner et a.,
1996). Anesthetics such as lidocaine stimulate NO- production in human neutrophils
(Mamiya et a., 1995).

Both O; and H,0, production decrease in neutrophils pre-incubated with L-argi-
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nine and stimulated with low concentrations of PMA (2 ng/ml) (Fig. 12). In one set
of experiments, reductions were 35 and 43% for O, and H,0,, respectively. In un-
stimulated cells, L-arginine also caused a reduction in the basal O - and H,0,-in-
duced fluorescence by approximately 15% each. These data provide evidence that 1.-
arginine can modulate both O; and H, 0O, production in (human) neutrophils.

The effect of nitric oxide modulators on rat neutrophil 0y activity isdemonstrat-
ed using the fluorescent indicator hydroethidinein Figure 13, which shows the rela-

Rat neutrophil oxidative burst
with nitric oxide modulators

Mean EB Fluorescence

(3=

TNFo
F i g.13. O; in rat neutrophils measured by flow cytometry after 15 min incubation with 4 ng/ml PMA.
NOS inhibitor L-NMMA significantly reduced intracellular O; of neutrophils.
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Fig. 14. Total nitrite and nitrate production in NO--modulated rat peripheral blood neutrophil. Measure-
ments after the treatments shown indicate significant NO- production.

tive change in ethidium bromide (EB) fluorescence (reflecting O production) in rat

neutrophils incubated with L-NMMA (N“-monomethyl-L-arginine), an inhibitor of
iINOS. A low concentration of phorbol myristate acetate (4 ng/ml, approximateV

for the rat oxidative burst) was sufficient to elicit measurable changesin 0, produc-
tion, which was significantly decreased by stimulating NO- production with 1 mM r-
arginine and TNF-a (10 ng/ml). Upon addition of L-NMMA to inhibit NO- produc-
tion, O, was significantly increased. Confirmation of these data came from
measuring totdl nitrites and nitrates in the same neutrophils. Figure 14 shows the dif-
ferences in three groups control, addition of L-NMMA, and L-arginine. A  dgnificant
difference was observed between addition of L-NMMA to inhibit;NOS and all other
treatments. This suggests the production of NO- in significant quantities by neu-

trophils and supports the hypothess that the interactions between ROl and RNI play

an important role in the activity of both systems.

Nitric Oxide, Peroxynitrite, and Disease

Nitric oxide is a free radical that has recently received considerable attention as an
important messenger molecule in the body. In reviewing the physiological roles of
the molecule, dtention should fird be directed to its function a a vasodilator through
its production in vascular endothelial cells and action on underlying smooth muscle
(Palmer et al., 1987). Confirmation that the effect was mediated by NO- was obtained
by utilizing an inhibitor of the synthase enzyme for NO-, namely N“-monomethyl-
L-arginine (L-NMMA) (Moncadaet a., 199 1).

It should be noted that NO-, being a ges can fredy diffuse throughout the cell, and
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indeed from one cell to another, unless bound by protein. The molecule can survive
for about 10-30 sin typical physiological environments, during which time it has
been hypothesized to travel between 200 and 600 um (based upon diffusion coeffi-
cient of oxygen in tissue sections) (Knowles and Moncada, 1992).

The recognition that nitric oxide regulation can affect some disease processes has
brought about an interest in the therapeutic use of high L-arginine diets (Becker et dl.,
1993; Saito et &l., 1987; Gianotti et al., 1993) or L-arginine infusion in traumatized
patients. Studies in L-arginine-treated rats have demonstrated significant alterations
in the translocation of gut bacteria. In one study (Becker et al., 1993), the amount of
NO- was substantially increased in L-arginine—fed rats after bum. In another (Gian-
otti et a., 1993), the authors concluded that one of the more significant effects of L-
arginine administration was influence on immune function, most likely the macro-
phage. Current dogma suggests that increases in intracellular and extracellular nitric
oxide may be beneficia to the appropriate microenvironment since the nitric oxide
n af & a O, savenger, essntidly being conveted to nitrite and nitrate and fore-
stalling the conversion of O, via SOD toH,0, and OH:.

A similar situation might exist inischemia/reperfusion injury, in which the role of
neutrophils has been demonstrated, particularly in remote injury such as seen in the
lung (Mulligan et al., 1992). In addition, it has recently been demonstrated that en-
dotoxin can caie a twoto fivefold incresse in arginine transport by pumonary atery
endothelid cells (Lind e d., 1993), suggesting that vest amounts of NO- can be made
at least in the lung, which consists of approximately 50% endothelial cells(Crapo et
a., 1978), creating significant quantities of potentially dangerous molecules. Ad-
ministration of a recombinant human TNF soluble receptor type 1 to lipopolysac-
charide-treated rats significantly reduced the damaging effects of endotoxinin lung
tissue, probably by preventing the upregulation of IL-6 by TNF (Ulich et a., 1993).

Thus we have a curious studtion. On the one hand, superoxide and its dismutation
products, hydrogen peroxide and subsequent hydroxyl radical, have been considered
to be the dangerous gpecies of oxygen-medigted tissue damage On the other hand, it
has been hypothesized that SOD, by removal of superoxide anions, creates a protec-
tive barrier by directly preventing the reaction of 0, with NO- to produce peroxyni-
trite (Beckman et al., 1990) in areaction known to be very rapid with arate constant
of at least 3.7 X10’m~'s™! (Zhu et a., 1992).

Nitrogen as a Defense Mechanism

The concept that NO- can act as a defense mechanism is based upon the knowledge
that NO- can remove superoxide from a system by a diffusion-limited reaction that
forms peroxynitrite (ONOO™):

0,+ NO-: ONOO~

Futhermore, this reaction occurs faster than the dismutaion of O; by SOD and there-
foreishighly likely to take place in biological systems. It isthought that NO- can re-
act with trangtion metdls, especialy Fe?* (which may dso be the most avalable met-
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al), thus competing with the Haber-Weiss reaction betweenH,0, and Fe?*. If thisis
true, NO- may be acting as an antioxidant.

Nitric oxide has been identified as playing a protective role by a number of stud-
ies, such asthat of Wink et al. (1993), who showed that in the presence of NO-, the
cytotoxicity of H,O, and 02‘ against Chinese hamster lung fibroblasts was abrogat-
ed in adose-responsive manner. Nitric oxide has been shown to promote ADP ribo-
sylation of actin, thus inhibiting cytoskeletal assembly in neutrophils. Theresult is
the regulation of neutrophil adhesion in margination, adhesion, and digpedesis (Clan-
cy et al., 1995). Suppression of NO- in arteriolar and venular endothelium resulted in
an increase in adhesion of leukocytes, but also a significant increase in oxidative
stress. Furthermore, this L-NAME-induced enhancement of endothelial adhesiveness
was medigted by intracdlular oxiddive dress rather than by direct action of NO- sup-
pression (Hausladen and Fridovich, 1994).

Prolonged NOS inhibition inHUVECs caused an oxidative- and platelet activat-
ing factor (PAF)-associated rise in adhesion of neutrophils on the surface of en-
dothelia cells (Niu et a., 1994), activated mast cells in the mucosa (Kanwar et al.,
1994), and mast cellsin rat mesenteric postcapillary venules (Kubes et al., 1993). In-
hibition of nitric oxide synthesis increased |eukocyte and endothelial interaction in
rat mesenteric venules as measured by an increase in P-selectin expression (Daven-
peck et al., 1994). Likewise Gauthier et al. (1994) demonstrated a reduction in adhe-
sion and decreased P-sel ectin expression following infusion of exogenous nitric ox-
ide. Volk et al. (1995) have demonstrated that extracellularly produced H,0,, but not
0, , enhanced the toxicity of NO- against endothelial cells. Decreased basal release
of NO- after myocardia ischemia/reperfusion preceded enhanced neutrophil adher-
ence to the coronary endothelium, leading to neutrophil-induced myocardial injury
(Ma et a., 1993).

Nitric oxide overproduction was shown to be a magor protective mechanism in the
T cell-dependent shock induced by staphylococcal enterotoxin B in mice, and NOS
inhibition might have detrimental consequences in T cell-mediated inflammatory dis-
orders by enhancing both production and toxicity of inflammatory cytokines
(Florquin et al., 1994). These data indicated that NO- production was able to exert a
direct effect on the production of some cytokines (TNF-a and IFN-y). Additionally,
there is a significant amount of evidence that the presence of NO- regul ates the ad-
hesion of neutrophils, and in the absence of NO--producing systems, a potentially
damaging accumulation of inflammatory cells is likely.

Nitrogen as a Pathogenic Molecule

Direct tissue damage by NO- has also been demonstrated, but usually at higher than
physiological concentrations. Administration of high concentrations of NO- (viani-
troprusside, 10-40 wg/kg/min for 15 min) was shown to cause rat mucosal damage,
which was attributed to excessive formation of peroxynitrite and subsequent forma-
tion of superoxide and hydroxyl radicals (Lamarque and Whittle, 1995).

The primary evidence for a role of nitric oxide in pathogenesis must come from
the effect of peroxynitrite, a potent and reactive oxidant (Beckman and Tsai, 1994).
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Peroxynitrite has been shown to damage endothelia cells directly (Palmer et al.,
1992; Kooy and Royall, 1994; Kooy et a., 1994), and to impair vascular permeabil-
ity (Villaet al., 1994) and play arole in the pathogenesis of atherogenesis (White et
a., 1994).

CONCLUSIONS

It is clear that many of the observations previoudy conddered to be related soldy to

reactive oxygen species are more likely associated with both ROI and RNI and the
interactions between the two. There is a drong body of evidence that peroxynitrite is
a mediagor of serious consequences, and tha NO- plays a poweful role in regulaing
many of the inflammatory responses, particularly those involving interaction between

neutrophils and endothelial cells.

The benefits of using NOS inhibitors or NO- donors are yet to be made clear. If
peroxynitrite is a particularly dangerous molecule, then prevention of its formation
by NOS inhibitorsislogical. However, the consequences of blockingNO- formation
are themselves quite serious, leading to increased neutrophil adhesion and simulta-
neous removal of a significant pathway for elimination of superoxide.

Neutrophils and macrophages are particularly reactive cells. Neutrophils know but
the onerole, which they play to perfection: they are designed with powerful protec-
tive mechanisms for antioxidant defenses. They produce reactive oxygen and nitro-
gen species as a means of destroying invading microorganisms, while attempting at
the sametimeto stay alive, at least until they have completed their disinfection task.
It is during this period—between the attachment phase and destruction of microbes,
and their subsequent removal from inflammatory sites-that significant tissue dam-
age can occur. Alternatively, when vast numbers of these cells respond, as in is-
chemia/reperfusion injury, regulation of their reactive nature is necesasary to prevent
rapid and dedructive tissue injury. How exactly this regulation can be achieved with-
out further compromisng the host is a question dill seeking answers.
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