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Flow Cytometric Analysis of Granulocytes

J. PAUL ROBINSON and WAYNE O. CARTER

INTRODUCTION

Neutrophils are derived from pluripotential stem cells in
bone marrow. Both monocytes and granulocytes share a
common parental stem cell (GM-CFU—granulocyte-macro-
phage colony forming unit). Several distinct stages of devel-
opment are recognized: myeloblast, promyelocyte, myelo-
cyte, metamyelocyte, band cell, and segmented neutrophil.
The maturation process is regulated by a number of sub-
stances including growth factors produced by circulating
monocytes and lymphocytes such as GM-CSF (granulocyte-

macrophage colony stimulating factor), M-CSF, G-CSF (1),

C3e (2), erythropoietin, and IL-3. Neutrophils are normally
stored in the bone marrow for five to seven days, after which
mature neutrophils are released into the blood. Factors such
as G-CSF and IL-1 play a key role in the release of neutro-
phils from marrow to the circulating pools (3-5). GM-CSF
from T-lymphocytes is implicated in the stimulation of neu-
trophil progenitors at doses as low as 50-100 U/ml (6). Cor-
ticosteroids commonly cause a significant increase in circu-
lating leukocytes, primarily as a result of increased release of
neutrophils from bone marrow stores. A secondary effect in-
cludes a decreased neutrophil adherence to vascular endothe-
lium, a decreased migration of cells out of the vasculature
and a slight prolongation of the neutrophil circulating half-
life (7-9). _

In blood vessels, two pools of neutrophils are recog-
nized: circulating and marginating. The former circulate
throughout the body in the blood stream, while the margin-
ating pool consists of neutrophils attached to endothelial cell
surfaces of small capillaries and venules. An approximately
equal number of neutrophils occupy each pool in the human.
Neutrophils in the circulating pool have a half-life of about 7
br (10) after which they marginate and emigrate through tis-
sue where: they remain functional for one to two days. They
are subsequently phagocytosed by macrophages or are dis-
posed of through the mucosal surfaces. In an adult, approxi-
mately 1.5 x 10° neutrophits/kg (body weight) are manufac-
tured daily (11). The neutrophil is a cell that is affected by,
and can be responsible for, a large number of clinical syn-
dromes. It operates as a primary source of toxic oxygen me-~
tabolites as well as a major contributor to the early inflam-
matory response and is, therefore, a cell of significant
importance.
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The purpose of this chapter is to examine the role of neu-
trophils and their functions in the immune system in terms of
abnormalities of function and methods for analysis. Several
aspects of neutrophil physiology and function will be ex-
plored and placed in the context of current experimental
techniques. Of primary interest will be the use of flow cyto-
metric techniques now available for single-cell analysis in
clinical evaluations. Table 24.1 provides a simple overview
of some of the clinical disorders of neutrophils, many of
which are discussed in this chapter. In so doing, it is in-
tended to provide some explanation as to the value and util-
ity of each technique. Table 24.2 lists a number of drugs
known to affect neutrophil function. These will not be dis-
cussed individually, except for the specific neutrophil func-
tion defects.

GENERAL OVERVIEW OF FUNCTION

Inflammation has been generally recognized by the clas-
sic symptoms of calor (heat), rubor {redness), tumor
(swelling), and dolor (pain). It has taken several decades
to advance our knowledge beyond a peripheral involve-
ment of the neutrophil in illness and disease. The past
decade has seen tremendous advances in the understand-
ing of the physiology and biology of neutrophil function.
It was Metchnikoff’s description of the phagocytic pro-
cess as part of a host defense system (12) and the subse-
quent demonstration of leukocyte chemotaxis that began
our present understanding of neutrophil function. The
measurement of in vitro chemotaxis by Comandon in
1917 (13) and more recently by Boyden in 1962 (14)
provided a means for practical evaluation of neutrophils
and other phagocytic cells. Boyden’s in vitro techniques
quickly spurred several major developments that linked
an endogenous chemotactic factor with a major chemo-
tactic factor (15-17). More recently, the linkage between
leukocyte recruitment and inflammation has become
more apparent with the discovery of a number of glyco-
proteins (CDI1/CD18 complex) whose primary purpose
is the adhesion to vessel walls (18). CD11b/CD18 is un-
doubtedly the same protein that facilitated the earlier ob-
servations of C3-coated particle adherence to cell mem-
branes (18, 19). There are many techniques now
available for the evaluation of neutrophil function. While
this chapter cannot cover in detail all of these methods
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Table 24.1
Clinical Disorders of Nentrophil Function
Function Inherited Disorder Acquired Disorder
Chemotaxis Job’s syndrome’ (75, 300-302) ‘Malnutrition (303) '
SCID (304, 305) Periodontal Disease (302, 306-309)
Chediak-Higashi (159-161, 310, 311) Thermal injury (164, 312-316)
Diabetes mellits (317, 318)
a-mannosidase deficiency Hodgkin’s disease (162)
Leukocyte adhesion deficiency (149-151) SLE (319, 320)
Kartagener’s syndrome (73, 75) Rheumatoid arthritis (166, 167, 321, 322)
Actin dysfunction (90) Hepatic cirrhosis (163)
Phagocytosis Actin dysfunction (323) Thermal injury (324)
Tuftsin deficiency (183) Splenectomy (325)
Juvenile periodontitis (182}
Neonate (181)
Micrebicidal Kitling' Chediak-Higashi (160) Malnutrition (326, 327)
MPO deficiency (328) Thermatl injury (329)
Specific granule deficiency (26, 330-332) Disbetes mellitus {333)
CGD (334) Sepsis
Actin dysfunction Hypogammaglcbulinemia (335)
: : Severe bacterial infections (336)
Malnutrition (303)
Hepatic cirthosis (5539)
Periodontal disease (30, 337, 338)
Paraproteinemia (34, 339)
AIDS (340)
Splenoctomy (325)
Rheumatoid arthritis (341)
- Disbetes mellitus (301, 342)
Adherence Adherence glycoprotein (149-151) Diabetes mellitus (343)
Deficiencies (265) ) Neonates (288, 239)
Cystic fibrosis (344)
Locomotion Lazy leukocyte syndrome (155, 345) Cytochalasin B (346)
Malnutrition (303}
Oxidative Killing - CGD (76, 202, 203, 347) Neonates (216, 348-350)
G-6-P Deh: deficiency (351) Thermal injury (352)
Chediak-Higashi (160, 331) Lasss fever (353)
Granule Punctions MPO deficiency (61-63, 354) Thermal injury (355)
Kartagener's syndrome (73-75, 356)
Chediak-Higashi (357, 358)
Membrane Deformahility Chediak-Higashi Nconates (350)
Immature neutrophils {359)
Opsonic Defects Chediak-Higashi (360}
LTB, Receptors Thermat injury (361)
Rheumatoid arthritis (341, 362)
Fe, I Receptors Cystic fibrosis (344) Neonates (363)

PNH* (278, 364-366)

{listed in Table 24.3), several are discussed in more de-
tail below.

FLOW CYTOMETRIC PROPERTIES OF
NEUTROPHILS

Flow cytometry as a tool for cvaluation of neutrophils is
particularly useful because of the properties neutrophils
display on the cytometer. Figure 24.1 shows a typical
two-parameter histogram of leukocytes run on a conven-
tional cytometer. The single-parameter projections of the
scatter are also shown in this figure. Because of their
“‘granulocytic’’ properties, neutrophils are easily distin-
guished from other leukocytes. This property has been
one of the easiest methods by which to separate neutro-
phils for lymphocytes or monocytes. Separation of eosin-
ophils can be further accomplished by observing the

light scatter at 90° under polarizing conditions. Many of
the studies of neutrophil function evaluated using flow
cytometry have taken advantage of the ability to selec-
tively gate the neutrophil population without physical
separation of the cells. This is a major advantage over
some of the more conventional techniques used in study-
ing neutrophils for several reasons. Firstly, there is less
handling of the cells, which reduces activation of various
metabolic pathways. Secondly, functional evalvations
can be performed faster and in the presence of other
cells that can be used as internal controls. Thirdly,

properties of other leukocytes can be evaluated as part of -

a protocol, resulting in a significant time and sample
volume reduction. Finally, far fewer celis are usually re-
quired when using flow cytometry, so a smaller volume
of blood or other tissue is needed from a patient.
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Table 24.2
Pharmacologic Alterations of Neutrophil Physiology
Chemical Chemotaxis Adherence Degranulation Microbicidal Killing Phagocyiosis
Alcohol (367-369) (367-369)
Aminoglycosides 370)
Amphotericin B (73, 371, 372) (3712) (372, 3713)
Aspirin (367-369) (367-369)
Auranofin (3749) ‘ (374, 315)
- Azelastine (376)
Chlorcamphenicol @am
Clindamycin (378)
Colchicine (368) (367-369) (72)
Cyclaphosphamide (379, 380)
Dapsone (381)
Epirubicin (382)
Erythromycin (378)
y-Interferon (282) (282)
Gealamycin (383, 384)
Ibuprofen (367-369) (367-369) (385)
Idarubicine (382)
Indemethacin (36T
Ketoconazole 372 312)
Naproxin (367)
Oxatomide (386)
Pentoxifylline (387 (38N (387)
Phenylbutazone (367)
Piroxicam (367-369) (367-369) :
Polymixin B : (388) (389)
Rifampin (377, 390)
Steroids (367 (367-369)
Sulphonamidss (356)
Tetracyclines (371, 378, 391, 392) (393) (394-397)

The specific property of 90° light scatter is thought to be
related to refractive properties of the nucleus and cytoplas-
mic granules and is one of the most useful in the evaluation
of neutrophils by flow cytometry. Other methods have been
proposed for discrimination of different celt populations by
flow cytometry. One in particular has been the use of the
metachromatic dye acridine orange (AQO), which has been
shown to be useful for flow cytometric determinations of dif-
ferential cell counts, among other things. Acridine orange
intercalates into DNA and RNA as well as into the lysosomal
granules, This property can be used to accurately discrimi-
nate between lymphocytes, monocytes, neutrophils, and eo-
sinophils, although some caution should be used since AO-
fluorescence wavelength is altered by changes in pH (20).

. Basso¢ and coworkers have made a significant contribu-

tion to many of the leukocyte quantitation techniques neces-
sary for accurate determination of phagocytosis (21-24).
Other methods for establishing a differential cell count using
flow cytometry, such as esterase activity, are also useful and
rapid. For instance, carboxyfluorescein diacetate (CF-DA),
when in the presence of the cell, is rapidly hydrolyzed by
celiular esterases to a highly fluorescent molecule, carbox-
yfluorescein. Figure 24.2 shows the two-parameter represen-
tation of leukocytes using 90° light scatter versus fluores-
cence before and after addition of CF-DA. This useful
technique provides another means of identification of neutro-
phils, thereby also providing some information about the
metabolic status of these cells.

PREPARATIVE PROCEDURES FOR EVALUATION
OF NEUTROPHIL FUNCTION

Methods for neutrophil preparation vary considerably ac-
cording to the isolation site and the number of cells re-
quired. It is important not to unduly ‘‘activate’’ neutro-
phils, since their ability to undergo stimulation may
provide critically important information. Several prepara-
tion methods for functional evaluation have been used,
such as Ficoll-Hypaque separation using the methods of
Boyum (25), percol density gradient separation technique
{(26), dextran sedimentation of buffy coats (27, 28),
erythrocyte lysis using ammonium chloride (20), and
many variations of these. One preparation technique that
we have found particularly useful for clinical evaluations
is a simple technique that we have termed the overlay
method (29). This method uses only 500 pl of blood, re-
quires little equipment, and is very fast,

Overlay Method: 500 pl of undiluted blood is carefully overlaid
onto 1 ml of ficoll in a 2-mi plastic centrifuge bullet. The bullet
is left motionless for 20 minutes on the bench at room tempera-
ture (Fig. 24.3). The top 250 ul of buffy coat is very carefully
removed and washed with PBS.

The resultant leukocyte-rich suspension contains a large
number of meutrophils useful for functional analysis. The
primary value in using this technique would be the need for a
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Table 24.3
Methods for Functional Assessment ,
~ Function Traditional Method Flow Methods (geneml reference (398))
Chemotaxis " Boyden chamber (12) None
Under agaroze (399) None
H;0; production DCFH-DA assay (56, 400)
O, production Cytochrome ¢ reduction Hydroethidine
Dihydrorhodamine 123 (401)
Respiratory burst Chemiluminescence (285, 350, 402-407)
Bactericidal S.aureus killing assay (302) FITC-labeled S. aureus (172, 408, 409)
AO Uptake (302) DCF-Texas red (199)
Membrane potential Spectrofliorometry (105, 106, 108, 110, 410-412) DiOC6(5) (56, 104, 191, 413-417)
Viability Trypan blue exclusion PI exclusion
Ethidium monoazide
Membrane fluidity DPH assay (418-420)
Adhesion glycoproteins Fluoresceinated receptor (31, 259, 264, 421)
3H-fMLP receptors (422—424) FITC-fMLP (425-427)
Microtubule disruption Phalacidin Phalacidin (85)
Membrane structure NBD phalacidin (428, 429)
Degranulation B-glucuronidase (430-432) AS-B1 (52, 53)
Lactoferrin (433)
Enzyme activity LAP assay (434--438)
Esterase activity (54, 439)
mCIB
ADB activity (60)
pH measurement FITC quenching (171)
Calciom flux Quin 2 spectrofluorometry (440) .
Fura-2 (441, 442)
) Indo-1 spectro Indo-1 flow (99, 101, 443-446)
Phagocytosis Colony counts, §. aureus FITC-labeled orgs. {172, 176, 447)
Flugrescence microscopy (302) 3-color flow assay (199)
Latex phagocytosis (448, 449) 2-color methods (264, 421)
' Latex phagocytosis (450-452)
Pinocytosis Fluid pinocytosis (187)
Bacterial degradation AO fluorescence (60)

DNA measurements (170)

population of minimally-activated neutrophils or for a very
rapid technique when a limited cell number is required.

An important consideration when using neutrophils in a
flow cytometer is their adhesive properties. Since most func-
tional assays involve lengthy incubations, it is necessary to
ensure that neutrophils remain in suspension during the dura-
tion of the experiment. Once neutrophils clump, there is lit-
tle that can be done to separate them without significantly
activating them further or damaging them. Neutrophils can
be maintained for several hours at 4°C in PBS buffer con-
taining EDTA, glucose, and gelatin (or bovine serum albu-
min) in the absence of calcium. It is important to understand,
however, that this treatment can alter the antigenic expres-
sion of adhesion glycoproteins, in particular CD11b, This is
discussed in more detail in a later section on these adhesion
molecules.

In situations where few cells are available, flow cytome-

try can be used where other techniques might be less attrac-
tive. One such example is the collection of leukocytes from
extremely small microenvironments, such as subgingival
pockets that exist in periodontal disease. We have uscd flow
cytometry to determine cell function capabilities of neutro-
phils isolated from a single diseased subgingival pocket (30).
In these studies, it was necessary to study neutrophils de-
rived from individual pockets and only a few microliters

were available. Clearly the ability to measure functional and
phenotypic characteristics by flow cytometry was important
in these studies.

POTENTIAL BENEFITS OF USING FLOW
CYTOMETRY

Ar additional benefit of using flow cytometric techniques
can be demonstrated in situations where simultancous mea-
surcments of multiple functions are desired. Examples of
such combinations include measurements of phagocytosis
and bacterial killing, phagocytosis and calcium flux, adhe-
sion glycoproteins and phagocytosis, and many others. A
specific study where several neutrophil functions were evalu-
ated concurrently demonstrated that tumor necrosis factor
(TNF) caused dose-dependent PMN activations, thereby
stimulating phagocytosis, respiratory burst, and C3b expres-
sion (31). Each of these functions was evaluated using flow
cytometric techniques. Some of these techniques will be dis-
cussed later in this chapter. Additionally, there may be situa-
tions where functionally distinct subpopulations of neutro-
phils may exist (32, 33). Few other techniques would be
capable of identifying such populations or making simultane-
ous functional evaluations. A number of fluorescent probes
are required to undertake many of these measurements. Most
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Figure 24.1. Neutrophils can be separated from other leukocytes
using dual-parameter light scatter. The abscissa shows the 90° light
scatter (90 LS) usually associaled with “granularity.” The ordinate
shows forward-angle light scatter (FALS) normally associated with
size. The neutrophils are clearly separated from the monocytes and
lymphocytes. The single-parameter “projections” are shown for each
parameter.

of the currently available fluorescent probes used for cell
function studies are listed in Table 24.4.

EVALUATIONS OF NEUTROPHIL FUNCTION
Neutrophil Mobility

The ability to observe the in vivo mobilization of neutro-
phils in response to a chemotactic stimulus can only be
performed by a test known as the skin window assay. An
abrasion is made on the skin over which a glass coverslip
or, alternatively, a small chamber is placed (34, 35). At
several intervals, the coverslip is either removed or the
chamber flushed with fresh buffer and leukocyte numbers
are evaluated. This is a very difficult test to standardize,
particularly in relation to the formation of the skin abra-
sion, and is considered to be of limited value in evaluat-
ing neutrophil function abnormalitics, except, perhaps,
for severe chemotactic deficiencies. Other in vitro meth-
ods are better suited to the determination of chemotactic
deficiency and are discussed below.

Granule Development and Function

Neutrophil granules are synthesized at different stages during
the maturation period. The release of granule contents from
neutrophils is a critical function of the normal neutrophil
carrying out its role in the immune response. Primary
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Figure 24.2. CF-DA (1 mM final) was added to a suspension of leu-
kocytes and the Increasing fluorescence of a gated neutrophil popula-
tion was monitored for 5 min (300 seconds}. Shown is the changs in
fiuorescence of the celis during that incubation. Viable functional cells
immediately hydrolyzed the CF-DA to carboxyfiuorescein, which
emits a strong green fluorescence when excitad by 488 emission (Ar-
gon laser).

(azurophilic) granules develop following the myeloblast
stage, whereupon they become promyelocytes, which are es-
sentially incompetent neutrophils (36). As the cell further
develops into the myelocyte stage, secondary (specific) gran-
ules are manufactured, a process that is complete at the
metamyelocyte stage, when the immature neutrophil ac-
quires some functional capabilities. In addition to these two
well-differentiated granule types, two other types have been
proposed and are known as tertiary granules and secretory
granules.

The primary granules contain myeloperoxidase (MPQ),
required for respiratory burst function; and nonoxidative en-
zymes, including acid hydrolases such as B-glucuronidase,
a-mannosidase, and 5'-nucleosidase; lysozyme; neutral pro-
teases, such as cathepsin G and clastase; and cationic pro-
teins (37-40). Further, an increasing number of small pep-
tides, of approximately 30 amino acids in length, known as
defensins, have been identified that also have important non-
oxidative antibactericidal activity in humans {41, 42), rabbits
(43) and rats (44).

The secondary granules are formed later in the matura-
tion of the neutrophil and, thus, conditions that result in the
release of immature neutrophils may cause a degradation in
function related to secondary granules. Contained within
these granules are lysozyme, lactoferrin, collagenase, vita-
min B, binding protein, cytochrome b, and possibly some of
the adhesion glycoproteins (39, 45, 46).
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Figure 24.3. A rapid neutrophil isolation technique that we have
termed the overlay method is shown. The overlay method is particu-
larly useful in the clinical laboratory as a rapid means of isolating leu-
kocytes for fiow cytometric analysis. Heparinized blood (undiuted) is
overlayed carefully onto Ficoll-Hypaque and left stationary on the

. Tertiary granules contain gelatinase (a metalloproteinase
that acts on protein constituents of extracellular matrices
(47)), CD11b (MAC-1) receptors, and cytochrome b (47-
49). Secretory granules (50, 51) contain gelatinase, although
evidence and function for these granules is ‘not well eluci-
dated.

Enzyme Content/Activity

Dolbeare et al. (52, 53) initially demonstrated the presence
of phosphatases and glucuronidases by flow cytometry using
naphthol derivatives as fluorogenic substrates. Similarly,
cellular enzyme activity can be measured by flow cytometry
(54, 55) as can esterase activity, using dyes such as
dichlorofluorescin diacetate and several others that are listed

in Table 24.3 (56-60). The latter assay is more useful as an.

indicator of the presence of esterase. Because of the varia-
tion in the rates of hydrolysis for cellular enzymes, this ac-
tivity can be used to differentiate cell populations as well as
to indicate normal metabolic function. Active metabolism is
involved in these hydrolytic reactions, and alterations in-
duced by immunochemical modulators are observable. Some
dyes can be very rapidly hydrolyzed to fluorescent com-
pounds directly within a cell. Carboxyfluorescein diacetate is
useful in this regard since it is hydrolyzed to the fluorescent
carboxyfluorescein (530 nm) very rapidly. The process is
compiete within a few seconds to a maximum of 5 min in
most cells, allowing very rapid evaluation. Several publica-
tions attest to the efficacy of the measurement of other en-
zymes by flow cytometry (54, 55).

Clinical Evalnation

The most common granule deficiency of neutrophils is a my-
eloperoxidase (MPO) deficiency in which there is a complete
or partial deficiency of MPO from the primary granules (61—
63). The deficiency is relatively common with an incidence

bench at room temperature for 20 min. By carefuily removing the top
layer of suspension, a red-cell depleted suspension can be achieved.
The suspension also contains platelets that can be removed by a gen-
tie centrifugation step. Celis isolated using this technique are the least
“activated” of any separation technique.

of 5 patients in 10,000 subjects and is characterized by auto-
somal recessive genetics (63). It has been reported that mon-
ocytes from patients with MPO deficiency have increased re-
spiratory burst duration with increased production of
superoxide, which may partially compensate for the defi-
ciency (64). Myeloperoxidase deficiency is almost silent
clinically except for an increase in susceptibility and severity
of Candida infections (63). Functionally, neutrophils dem-
onstrate normal chemotaxis, phagocytosis, and degranula-
tion, but & prolonged respiratory burst. The diagnosis is eas-
ily made by peroxidase stain of a blood smear. Such
deficiencies may become more significant in patients who
have another primary condition or receive therapy that may
leave them with a reduced immune function.

Congenital specific granule deficiencies have been re-
ported and some neonates have demonstrated deficiencies in
specific granule formation (65-71). However, these defi-
ciencies usually result in relatively minor microbial killing
abnormalities. Severe recurrent bacterial infections can oc-
cur but are the exception.

Microtubule disorders can adversely affect the ability of
a neutrophil to degranulate, as demonstrated by colchicine,
which interferes with microtubule formation (72). Clinically,
patients with' microtubule dysfunction, such as Kartagener’s
syndrome, have recurrent sinus, middle ear, and respiratory
infections, but this is more directly related to dysfunctioning
cilia and impairment of leukocyte migration and chemotaxis
(73-75), as discussed below. Abnormal microtubule metab-
olism has also been identified in chronic granulomatous dis-
ecase (76).

Cytoskeleton Function

After activation of neutrophils, extensive movement of the
receptor-ligand complexes within the membrane has been
demonstrated (77-79), resulting in characteristic shape
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Table 24.4
Fluorescence Probes for Neutrophil Studies

" Probs Excitai — Ref Consideration
H.0. DCFH-DA 438. 515-575 (56) Broad emission spectra
O HE . 438 575-590

Bodippy : 52 ‘ UV Laser

Calcium Indo-1 - 352 420; 525 (453) UV Laser required
Calcium fara 2 340 520 (191, 453, 454) Dual Laser excitation required
Calcium fara 3
Calcium Quin-2 352; 420 525 (440} UV Laser required
Markers FITC 438 525
Markers PE 438 575
Markers ‘Texas Red 610 630
Markers APC - 532 650
Esterase CFDA 488 525 (59)
Viability FDA 488 525
Esterase Decanoyl Fluor 488 525 (455)
Esterase CDF : 488 525 (59)
Esterase CDF DA 488 525 (59)
Esterase CDMDF-DA 488 525 39
Esterase ADB» 488 (60)
pH ADB 488 (60)
Phosphatases ‘MFP 488 ,
GSH mCIB 352 460-510 UV Laser required
Enzymes AS-Bl (52, 53)
Fluidity DFH 352 420 (418, 419, 456-459) UV Laser required
Fluidity TMA-DPH 352 420 (458, 460, 461) UV Laser required
Fluidity Pyrenedecanoic acid 360 400/450 462)
Actin NBD-Phallacidin 488 520 (86, 428, 429, 463) UV Laser required
Actin PE-Phalloidin 488
Membrane Potential  DiOCs(3)' 488 505560
Membrane Potential DiOC(3) 488 505-560 (119)
Membrane Potential Rbodamine 123 488 i
Cell Tracking PKH1 438 528
Celt Tracking PKH2 488 515
pH AO 438
Viability* AQ 488 (60)
pH FDA 438
pH PA-dicyanobenz 352 460; 525 UV laser required
Killing AO 488 Emission is pH dependent
Viability PI 488 >630
Viability EMA 488
Peptidase leucyl aminopeptidase s 528 (438) UV laser required
“ADE: 1,4-diacetoxy-2,3-dicancbenzene
Wised to measure bacterial degradation (red DNA)
changes (77). It is likely that this redistribution of the com-  Clinical Evaluation

plex occurs within the plane of the plasma membrane utiliz-
ing the microfilaments. Evidence for this hypothesis is based
partially upon the role of cytoskeletal disruptors, such as cy-
tochalasin B (a fungal metabolite) and chloropromazine. It is
thought that cytochalasin B binds to the free ends of the F-
actin molecule and thus inhibits fMLP-induced (formyl-me-
thionyl-leucyl-phenylalanine) polymerization of actin in neu-
trophils (80-82). Evidence of the involvement of regulatory
G proteins in the transmembrane signaling after fMLP acti-
vation in human neutrophils has recently been demonstrated
(83). GP 140, which interacts with the cytoskeleton during
activation by wheat germ agglutinin (WGA), has also been
implicated as playing a role in neutrophil activation (84). No
clear evidence exists as to effective flow cytometric methods
for detection of cytoskeletal defects. However, there are
well-developed methods for measurement of actin polymeri-
zation by flow cytometry (85, 86).

As discussed above, Kartagener's syndrome, and more
specifically immotile cilia syndrome, is an autosomal re-
cessive disorder resulting in a microtubule defect that im-
pairs leukocyte migration and chemotaxis (73, 75). The
clinical manifestations of immotile cilia syndrome include
recurrent sinusitis, otitis media, and respiratory infections
due to the cilia and leukocyte dysfunctions (75). In a sepa-
rate report, a patient with recurrent bacterial infections and
abnormal chemotaxis had excessive neutrophil microtubule
assembly (87).

Microfilament disorders inhibit leukocyte tocomo-
tion, as demonstrated by in vitro treatment of neutrophils
with cytochalasin B, which disrupts actin filaments (88,
89). A clinical report of abnormal actin polymerization

mvolvmg an infant with impaired chemotaxis has been
reported (90).



412

PART Il : CLINICAL APPLICATION

109

PI Viability
1 [ I | l*

L.l ll]l&l

43

T l
1000

T Y
s

90 Degree Scatter

400

Figure 24.4. Demonstration of the use of PI to identify viable and
nonviable cells by flow cytometry. P/ was addad to a suspension of
cells with a suspected number of dead cells. Using a 2-parameter

contour display that shows each population of celis, the lymphocytes

Membrane Integrity (Viability)

Measurement of cell viability using dyes, such as propidium
iodide or fluorescein diacetate, should also be considered
functional tests. Failure to evaluate viability in an assay of
neutrophil function can lead to erroneous data, since a non-
viable population will significantly influence the results. The
advantage of flow cytometry is that determinations are made
during or immediately after functional measurements. Non-
viable cells can be gated out of the analyses (91) by either
backgating on the fluorescent population of viable cells or
observing scatter alterations of dead cells, An example of
this is shown in Figure 24.4, which shows the changing fluo-
rescence of cells that take up the Pl stain (dead cells).

Such measurements can be performed rapidly and objec-
tively and have been used successfuily in toxicology applica-
tions (92) as well as in routine clinical assays. As a simple
measure of the effects of xenobiotics on a cell, viability is
certainly one of the most straight-forward measurements
available using flow cytometry.

METABOLIC FUNCTIONS
Measurement of Cytosolic Free Ca?*

The initial steps of signal transduction following receptor-
ligand interaction involve activation of phospholipase ¢ and
membrane-bound glycophotidyl inositol. This leads to the
release of inositol phosphates and fatty acids, which trigger
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and neutraphils can be identified. Cells that teke up the P! dye are

considered nonviable. The histogram on the right shows the viable
celis selectively gated from the left histogram.

activation of protein kinase C and subsequent flux of calcium
across the plasma membrane. Thus, a direct cellular re-
sponse can be measured if alterations of calcium concentra-
tion can be monitored.

Since calcium plays a critical role in cell function, it is
important to be able to determine the extent to which chemi-
cal interactions affect the redistribution of this divalent cat-
ion. The area is not without controversy, however, since
there is not complete agreement on the role of calcium in
neutrophil activation during phagocytosis. There are at least
two schools of thought on the role of calcium in neutrophil
activation. Of importance, is the type and number of differ-
ent ligand interactions involved. Essentially, when a single
ligand-receptor interaction occurs, such as phagocytosis of
yeast (via C3b), calcium is not required for respiratory burst
(93). However, others have shown a lack of respiratory burst
in the absence of calcium (94-96).

Indo-1 is an excellent dye for flow cytometric measure-
ment of free intracellular calcium. This dye has the ability to
undergo a fluorescent wavelength emission shift when bound
to calcium. Indo-1 is introduced to the cells as an acetox-
ymethyl ester that undergoes enzymatic hydrolysis in cells to
yield free dye. Flow cytometry has proved to be a valuable
resource in the evaluation of the role of calcivm in neutrophit
function. A major spectral change can be measured when in-
dicators of Ca?* penetrate cells and are excited at 357 nm
{ultra-violet excitation}. Several different Ca?* indicators are
now available for use (97-100).
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Figure 24.5. A population of Indo-1-loaded cells stimulated by iono-
mycin to demonstrate the rapid response of viable functional cells. By
calibrating the fiow cytometer with known: concentrations of calgium,
accurate measurements of intracellular free calcium can be deter-
mined.

Method. Cells are loaded with Indo-1 (final concentration 3 wM)
for 15 min at 37°C and then immediately run on the flow cytome-
ter to obtain fluorescence histograms at two emission wave-
lengths; 395 nm (bound Ca®*) and 525 nm (non-bound calcium).
The Ca** concentration of cells can be determined independently
of dye concentration by evaluating the ratios of the two fluores-
cent emissions. Thus, a high 395/525 nm ratio would indicate
bound Ca?*. Ionomycin is used as a positive control for measure-
ment of calcium flux. Ionomycin (3~-5 mM) will cause an in-
crease in the BOUND (long wavelength) fluorescence signal
(i.c., increase in BOUND [Ca**] inside the cell).

This measurement is a vary rapid event that can be ob-
served on the flow cytometer in real time given appropriate
instrumentation. Accurate determination of intracellular cal-
cium concentration can be made if aliquots of Indo-1 loaded
cells are placed in solutions of various known calcium con-
centrations and treated with an ionophore such as iono-

mycin, The properties of Indo-1 are well-described in the -

literature (101). Observations of the real-time alteration in
[Ca**] can be performed using list mode on the flow cytom-
eter. Figure 24.5 shows an example of cells that have been
stimulated by ionomycin, demonstrating the rapid alteration
in calcium flux as measured by the flow cytometer.

One exampie of a calcium-requiring activation of human
neutrophils is after stimulation by fMLP. In this interaction,
fMLP binds to its receptor initiating a G-protein regulated
activation of phospholipase C that then hydrolyzes a mem-
brane-bound phospholipid (4,5 bisphosphate) to form both

1,2-diacylglycerol (DAG) and 1,4,5-triphosphate (IP3),
which release calcium from intracellular stores primarily in
the endoplasmic reticulum (102).

Less-recognized clinical abnormalities include glycogen
storage disease type.1b, which is characterized by recurrent
bacterial infections. Reduced phagocytic function appears to
be related to diminished calcium mobilization and defective
calcium stores; it is recognized by decreased elevation of
cytosolic calcium to fMLP and decreased mobilization of
calcium in response to ionomycin (103).

Membrane Potential

Neutrophils undergoing a receptor-ligand interaction show
an increased permeability to ions and a subsequent reduction
in transmembrane potential (104~107). A specific inhibitor
of chymotrypsin-like enzymes can block the potential
change, suggesting that, after the receptor-ligand interaction,
a protease is required for the initial reaction (108). By use of
the carboxycyanine dye [diQ-Cs-(3)], a loss of cell-associ-
ated fluorescence is demonstrated, indicative of cell activa-
tion and, therefore, a change in resting transmembrane po-
tential (108). Neutrophils that are incapable of responding
oxidatively to stimulation do not show this fluorescence shift
(109), suggesting 2 relationship between alterations in trans-
membrane potential and the gencration of oxygen metabo-
lites (108). The dye diffuses into the cells and equilibrates
with the external medium. Upon stimulation of the cell, the
intracellular dye is displaced by increased uptake of ions, re-
sulting in a reduction of cellular fluorescence (depolariza-
tion). With some activating agents (fMLP), the cell will re-
equilibrate after a short period and repolarization will be
demonstrated by a return to the previous fluorescence inten-

sity.

Using flow cytometry, individual cells can be monitored
kinetically, allowing a determination of the rates of polariza-
tion. Variations in these rates could be a significant factor in
observing alterations in cellular function. This is shown

. kinetically in Figure 24.6, where a population of neutrophils

was stimulated with 100 ng/ml of PMA after being loaded
with the carboxycyanine dye diO-C5-(3), as described
above. Response is rapid and definitive. Defects are easily
observed using this method. However there are a number of
problems associated with membrane potential measurements
that make this a difficult test to use clinically, Measurements
in mitochondrial membrane potential can also be measured
directly. This has been demonstrated by Korchak et al. (110)
using DioCe(3) and also by Darzynkiewicz et al. with the
mitochondrial-specific dye Rhodamine 123 (111).

Clinical Evaluation

Ore of the first functional abnormalities to be lost in neutro-
phils is the normal capabilities of alteration in membrane po-
tential. Qur laboratory has observed that neutrophils isolated
from blood after 18-24 hours will produce a significant re-
spiratory burst (H,O;) or chemiluminescence response but
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Figure 24.6. A population of neutrophils undergoing a rapid altera-
tion in membrane potential after stimulation by PMA (100 ng/mi).
Cells were loaded with DIOCS (3) for 5 min, placed into the flow cy-
tometer, and stimuiated with the PMA. Measurements were begun im-
mediately upon stimulation and maintained for 10 min. The two histo-
grams shown demonstraie the changes in membrane potential of

both lymphocytes (left) and neutrophils (right) from the same suspen-
sion of leukocyles. Each population was seleclively gated and time

that the membrane potential response is severely deficient
(unpublished observations). However, there are no reports of
distinct clinical syndromes where abnormal membrane po-
tential has been shown to be of particular importance as an
individual phenomenon. Presently no data are available to
demonstrate clinical utility.

Chemotaxis

The chemotactic response of the neutrophil is based upon the
ability of these cells to determine a gradient of a chemoat-
tractant substance and to direct the movement of the cell to-
ward the source of the attractant. In order to accomplish this,
neutrophils have a complex cytoskeletal mechanism involv-
ing both microtubules, used to directionally potarize the cell,
and microfilaments for cell movement. The process of
movement involves a constant attachment and detachment of
the neutrophil to a substrate. Chemotactic function is an im-
portant neutrophil function and several excellent reviews
have been written on the subject (112-116}. Chemotaxis,
like most neutrophi! functions, is not an isolated function,
but is part of a complex series of events that occurs during
and after activation of the cells. The process of chemotaxis

¥ T T

e i5e 30;; ‘50. ) =31 ]
Time (Seconds)

versus fluorescence was recorded simuitaneously. No alteration in
the lymphocyte membrane potential of the lymphocyte population to
the PMA was recorded. The neutrophil population, however, demon-
sirated a remarkable and rapid depolarization, consistent with the
lonic flux expected with mebrane activation. Neutrophils normally do
not repolarize after etimulation with PMA; however, with other activa-
tors such as fMLP, repolarization is observed after 4~7 min.

itself cannot presently be measured satisfactorily using flow
cytometric technology;, however, the ability of a neutrophil
population to become activated by common chemotactic
agents, such as C5a and formyl methionyl leucyl phenylala-
nine (fMLP), can be easily evaluated. One useful method is
the determination of alterations in fMLP receptors on neutro-
phils via fluoresceinated fMLP using fluorescein isothiocy-
anate (FITC). Upon activation of the cells, the appearance of
available receptors can be evaluated by measuring the green-
associated FITC fluorescence of the neutrophils. GM-CSF
has been shown to increase the binding of fMLP to PMN (1).
Neutrophils contain storage pools of fMLP receptors
within the specific granules and these receptors are trans-
ported to the surface in response to stimulatory signals (117).
FMLP binding is saturable with an estimated 50,000 sites/
neutrophil and a Kp=10- nM (118). The receptor-ligand
(radiolabelied) complex has a molecular weight of 55-70 kD
{119). The receptor is distinct from C5a (120) or LTB, (121).
Flow cytometric studies have identified high- and low-affin-
ity binding sites as weil as neutrophil subpopulations with
varying numbers of receptors (122, 123). Response to fMLP
by neutrophils is down-regulated through internalization of
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Figure 24.7. A schematic guide for the interaction of some of the
neutrophit activation mechanisms and their relationship to cytokines
and lipid mediators. Shown are several imporiant receptor-mediated

the receptor-ligand complex; however, recovery from this
down-regulation is rapid (20 minutes at 37°C (124, 125). At
low concentrations, fMPL will cause the release of vitamin
B1; binding protein, and B-glucuronidase and lysozyme (47,
126) from secondary granules. However, at higher concen-
trations, it is known to stimulate the release of most primary
and secondary granule contents {127). Since bacterially-de-
rived peptides are remarkably similar to fMLP, the contin-
ued presence of fMLP or related molecules could cause a
continued stimulation of enzyme release from stimulated
neutrophils.

A specific CSa receptor has been identified on human
neutrophils with a density of 100,000-300,000 sites/cell
(120) and a molecular weight of approximately 44kD (128).
Adherent ncutrophils undergo exocytosis in the presence of
C5a and both specific and azurophilic granules release their
contents (129). In vitro, in the absence of cytochalasin B
(and adhesion), very high concentrations of C5a are required
to stimulate neutrophils (130). Human neutrophils have been
shown to be able to activate (131) and inactivate C5a via a
specific granule factor (132), thus providing a closed-loop
control of responsiveness to this activator.

LTB, receptors occur in a low affinity form (kp=3.9 ><
1009\, ~4400 sites/cell) and in a high affinity form (Kp=
X 10~%M, ~270,000 sites/cell) and are quite independent of

™A, pal, PGE, PGF.x  Platelet Mﬂwﬂng Factor

activation mechanisms associated with various inflammatory pro-
cesses, including endotoxemia or thermal injury,

the previously mentioned receptors (121,133). Neutrophils
can be both stimulated by LTB,4 and produce LTB, as a prod-
uct of arachidonic acid metabolism via the lipoxygenase
pathway. Several physiological effects have been demon-
strated on neutrophils by LTB,, such as chemotaxis (134),
aggregation (135), and degranulation (136). Further, L.TB,
has proved important in the mechanism of neutrophil adhe-
sion to endothelial cells. As noted previously, increased ad-
hesiveness (aggregation) due to LTB4 has been shown, but
these adhesion-promoting properties have also been reversed
in the presence of an anti-CD18 monoclonal antibody (137).
Figure 24.7 provides a schematic guide for the interaction of
some of the neutrophil activation mechanisms and the rela-
tionship to cytokines and lipid mediators.

Interleukin 8 (IL-8) is an important chemotactic factor,
This factor has numerous nomenclatures including the fol-
lowing: MDNCF-Monocyte-derived neutrophil chemotactic
factor) (138); MONAP (139); NAP-1 (140); NAF; and IL-8
(141). The major form of IL-8 is a 72-amino-acid protein,
but it has not shown significant homology with other
cytokines including, IL-1, TNF, or IFNs (138, 142). IL-8 is
capable of stimulating most activation pathways in neutro-
phils, such as degranulation (139), directional migration, ex-
pression of adhesion molecuies, activation of the respiratory
burst (143), enhanced Candida killing (144), and general ac-
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tivation (143, 145). There are specific IL-8 receptors on
PMN (146) with about 20,000 high affinity binding sites
(Ks=8 X 10719, IL-8 also very rapidly regulates its own
receptor expression associated with ligand internalization.
Further, this down-regulated receptor was shown to be rap-
idly recycled to the surface of the neutrophil (147).

Products of arachidonic acid metabolism are also well-
known chemoattractants. Products of the lipoxygenase path-
way, such as 5S-HPETE, are converted to 5-HETE and leuko-
trienes, most of which are known to exert strong chemotactic
activity upon neutrophils (148). Regulation of chemotaxis is
modulated by the concentration of the chemoattractant. Sev-
eral chemicals are known to exert enhancement (alcohols,
degranulation) or depression (polyene antibiotics) of chemo-
tactic function. '

Clinical Evaluation

Defects in neutrophil chemotaxis are usuvally accompanied
by recurrent infections of the skin or respiratory tract. Clini-
cal syndromes with infections usuatly begin in the infant and
- are characterized by severe infections cansed by organisms
normally considered to be of relatively low pathogenicity.

A deficiency in the surface glycoproteins CD11a/CD18
(LFA-1), CD11b/CD18 (CR3), or CD11c/CD18 (p150,95)
can lead to chemotactic defects (149). This syndrome, called
Leukocyte Adhesion Deficiency (LAD) has been identified
by Anderson et al. (149), Amaout et al. (150), and Ross
{151). This is an autosomal recessive disease characterized
by recurrent bacterial and fungal infections, impaired pus
formation, and poor wound healing (149). The genetic ab-
normality is cansed by defective biosynthesis of the B sub-
unit of the heterodimer complex associated with each glyco-
protein adhesion molecule (149, 152-154). Lazy leukocyte
syndrome was first identified in children and characterized
by gingivitis, stomatitis, and recurrent upper respiratory in-
fections (155). Severe circulating neutropenia was identi-
fied, but normal myeloid precursors and mature neutrophils
were evident in the bone marrow (155).

Lazy leukocyte syndrome is now recognized to have sev-
eral variants, including a range in severity of neutropenia,
variation in age of onset, and cases with defective phagocy-
tosis and microbial killing. However, all possess a basic
functional defect in locomotion (156).

Hyperimmunoglobulin E, or Job’s syndrome, is mani-
fested clinically as dermatitis, recurrent staphylococcal skin
infections, and elevated serum concentrations of IgE (157).
Recurrent staphylococcal pneumonia, otitis externa and me-
dia, sinusitis, mucocutaneous candidiasis, and eczema are
also seea (157, 158). Neutrophil chemotaxis abnormalities
are common, although variable (75).

Chediak-Higashi syndrome is an autosomal recessive
disease characterized by severe recurrent pyogenic infections
(159). Many cells, including the neutrophils, display abnor-
mal granule formation with giant cytoplasmic lysosomal
granules. Neutrophils display abnormal chemotaxis and oc-

casionally decreased numbers of centriole-associated micro-
tubules (75, 160, 161). Other clinical manifestations are
granule-related and include partial albinism, associated with
a melanocyte dysfunction, and bleeding tendencies due to
platefet defects (159).

Several diseases bave neutrophil chemotaxis disorders
that may be associated with a circulating inhibitor of loco-
motion or an inhibitor of a seram chemotactic factor. Associ-
ated diseases include Hodgkin's disease (162), hepatic cir-
rhosis (163), thermal injury (164), and severe inflammation
(165). Circulating immune complexes in rheumatoid arthritis
can act on neutrophils to inhibit chemotaxis (166, 167). Dis-
orders of the microtubule or microfilament system (discussed
above) can also inhibit chemotaxis.

Phagocytosis

The phagocytic process can be divided up into a number of
clearly defined stages, cach of which can fail. These stages
are broadly defined as attachment or particle binding and in-
gestion. Unless phagocytes are able to bind to the microbe,
phagocytosis will not take place. By utilizing both opsonized
and nonopsonized organisms, both opsonic capacity and
phagocytosis can be measured at the same time. Thus, it is
important to determine whether abnormal phagocytosis is
due to a failure in the opsonization process or to a defect in
the ingestion capability of the phagocyte. Since the main cell
receptors for phagocytosis are C3b (CR1) and FcR (Fc por-
tion of IgG), it is also possible to evaluate these functional
receptors as discussed earlier. An example of a neutrophil
phagocytosis of S. aureus is shown in Fig. 24.8.!

Assays of phagocytosis of bacteria have been developed
for flow cytometry by Bassoe et al. and other investigators
(20, 21, 168-174). These measurements can be valuable in
trauma, such as thermal injury, or in recurrent infections
where specific bacteria can be used for assessment of im-
mune function. Immune complexes can also be measured
with methods similar to those for bacteria (175).

Several innovative methods for determining phagocytic
capacity using flow cytometry have been demonstrated. A
major advantage of flow cytometry over other methods is the
relatively small number of cells required and the signifi-
cantly fewer preparative procedures for isolating leukocytes.
These are important when using small animals or when eval-
uating pediatric patients.

The availability of a number of fluorescent probes has
increased the number of methods available. One useful
method described uses fluorescein heat-killed Candida albi-
cans and, after phagocytosis is complete, ethidium bromide
(EB) (50 ug/ml) is added. Analysis using ultraviolet (UV)
excitation with red and green emissions reveals green inter-
nalized organisms, while surface attached, but noninternal-
ized, organisms are red (176). This procedure utilizes the
phenomenon of resonance energy transfer between FITC and

1See Color Plate I between pages 432 and 433
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ethidium bromide. Since EB does not penetrate the cell
membrane, only the external organisms are affected by the
EB. This provides good discrimination between internal and
external organisms. One major advantage of this test is the
use of an inexpensive clinical analyzer flow cytometer that
does not require expensive lasers and complex optical con-
figurations.

Another interesting use of flow cytometry in evaluating
neutrophil function is in the evaluation of phagocytosis of
fluorescent-labeled viruses. In this study FITC-labeled
Herpes simplex viruses (HSV) were phagocytosed by human
neutrophils and both internalization and surface binding were
determined by flow cytometry. Surface bound virus fluores-
cence was quenched using a trypan blue quenching proce-
dure (177, 178).

Clinical Evaluation

Abnormal phagocytosis can occur with a variety of clini-
cal disorders. The defect can be associated with the neu-
trophil itself or with an immunoglobulin or complement
defect. Immature neutrophils released from the bone mar-
row have a defective phagocytosis that may be related to
a high negative surfice charge (179, 180). Abnormal
phagocytosis has also been identified in the neonate and
in juvenile periodontitis (181, 182). Tuftsin deficiency is
cither a familial disorder or is acquired as a consequence
of splenectomy; it results in increased susceptibility to in-
fection due to defective neutrophil phagocytosis (183).
Tufisin is a tetrapeptide produced by the spleen that en-
hances the neutrophil phagocytic ability (184). Clinical
findings include respiratory infections such as bronchitis
and pneumonia, and enlarged fluctuant lymph nodes
(183, 185). Normal actin polymerization and microfila-
ment function are also necessary for phagocytosis and,
therefore, actin polymerization defects may interfere with
the phagocytic process (90). Complement receptor C3bi
deficiency can also result in altered phagocytosis (186).

Pinocytosis

Pinocytosis can also be a useful measure of cell function and
several well-defined assays have been developed for flow
cytometry {187, 188). fMLP-stimulated pinocytosis studies
have demonstrated a linkage between the initial phase of pi-
nocytosis and the characteristic shape changes observed in
activated neutrophils. The assay used for these studies uses
FITC-dextran and is relatively simple to establish, consider-
ing the availability of a flow cytometer. One of the most
useful aspects of this assay is the ability to evaluate a large
number of concommitant effects such as pH changes, kinet-
ics of the responses, and temperature and jonic concentration
effects (187).

Neutrophil Defense Mechanisms

Traditional descriptions of neutrophil defense mechanisms
include both oxidative and non-oxidative mechanisms. Rare

clinical syndromes may selectively deplete one major com-
ponent of one or more pathways but, by and large the neutro-
phil activates many of its defense mechanisms concurrently
and often the clinical manifestation of defects in specific
components is minimized. One such case would be in MPO
deficiency, which is characterized by a reduced bactericidal
rate but ultimately has a normal killing capacity of neutro-
phils.

Oxidative Systems

Oxidative mechanisms requirc oxygen in significantly
larger amounts than resting neutrophils require. A variety
of toxic oxygen species is produced both inside and
outside the cell. The associated activity is known as the
respiratory burst, which resuits from activation of
NADPH oxidases via an electron transfer reaction involv-
ing 2 electrons from NADPH through an FAD-flavopro-
tein utilizing cytochrome b** to oxygen. The superoxide
anion produced in this reaction can be converted to H;O:
by superoxide dismutase and, in concert with myeloper-
oxidase (MPO) and a halide (primarily chloride), hypo-
chlorous acid can be produced. Each of these species is
capable of damaging ingested bacteria, external microbes,
the neutrophil itself, or closely sitvated tissue.

C-reactive protein has also been proposed to have a mod-
ulatory role in neutrophil oxidative burst, inhibiting superox-
ide release, chemotaxis, degranulation, and phagocytosis of
activated neutrophils (189). C-reactive protein has also been
demonstrated to bind to the surface of PMA-activated neu-
trophils (190).

By far the most useful measurement of intracellular H:0,
estimation is the dichlorofluorescin diacetate (DCFH-DA)
probe technique as proposed by Bass et al. (56). The assay
depends upon the incorporation of 2'-7’ dichlorofluorescein
diacetate (DCFH-DA) into thie hydrophobic lipid regions of
the cell, where the acetate moieties are cleaved by hydrolytic
enzymes to the nonfluorescent molecule 2'-7’,dichloroflu-
orescein (DCFH), which becomes frapped within the cell
due to its polarity. Upon cell activation, NADPH oxidase
catalyzes the reduction of O; to O;~, which is further re-
duced to H;O;. The oxidative potential of H,O; and peroxi-
dases are able to oxidize the trapped DCFH to 2'-7’ ,dichlo-
rofluorescein (DCF), which is characteristically fiuorescent
at 530 nm (the same emission as FITC). Since the green flu-
orescence produced is proportional to the amount of H,0,
generated, it is possible to calibrate this assay to allow the
expression of the intracellular production of H;O; in neutro-
phils in terms of attomoles/cell (56). There are many exam-
ples of use of this assay in the literature, including studies on
various animals such as rats, mice, and humans (30, 56, 58,
191-199).

A calibration curve can be generated based on data ob-
tained from spectrophotometric and flow cytometric mea-
surements that allows conversion of the fluorescence histo-
grams on the flow cytometer into quantitative estimations of
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Figure 24.9. A histogram showing the kinetic response of neutro-
phils stimulated with PMA as measured by the H;O, assay (described
in the text). As the neutrophiis respond to the PMA, respiratory burst
activation results in production of H:0,. Celis had been previously
“loaded” with DCFH-DA which becomes Intracellularty hydrolysed to
DCFH by cellular esterases. Oxidizing conditions (H:04) caused oxi-
dation of the nonfiuorescent DCFH to fluorescent DCF, which was
measured on the flow cytometer as green fluorescence, Each single-
parameter histogram is from measurements taken from a tube sam-
pled saven times over the 30-min reaction period.

H:0: production (56). The assay is a very sensitive measure
of a cell’s capacity to undergo a respiratory burst in response
to a variety of stimuli. While it may be of interest to deter-
mine the exact amount of HzO; per cell, it is unnecessary in
most clinical situations and an alternative measurement is the
relative amount of fluorescence (therefore H»0.) produced
by the cell before and after stimulation. Figure 24.9 shows
the kinetics of the neutrophil response to PMA (100 ng/ml)
over a 30-min period. It is not always necessary to measure
the kinetics of the entire response. For most clinical evalua-
tions, a beginning and ending measurement at O and 30 min
is adequate. Figure 24.9 displays the difference in the fluo-
rescence histograms of unstimulated and stimulated cells af-
ter a 30-min incubation at 37°C. The fluorescence histo-
grams represent the amount of H,O, (proportional to the
amount of green fluorescence) produced by the cell, as de-
scribed above,

Before the development of the DCF assay for flow
cytometry, accurate estimations of intracellular H;O, were
very difficult. Several laboratories, including our own, have
further developed the assay of Bass et al, for use with micro-
quantities of blood. This is particularly valuable for the eval-
uation of cell function in experimental models using small
animals (mice and rats) and also for pediatric evaluations of
cell-function studies. In this respect, several innovative de-
velopments have been reported whereby several functions
can be determined in p-quantities of whole blood. Trinkle et
al. (199) have used a combination of DCF, phagocytosis,
and killing in a few huadred p-liters of blood. This assay is
rapid and comprehensive and would be particularly useful

for pediatric patients. The major disadvantage of the proce-
dure however, is the relatively complicated setup required
for the flow cytometry since dual-laser excitation is neces-
sary.

Superoxide-Nitroblue tetrazolium (NBT) reduction has
been measured flow cytometrically by Blair et al. (200). The
method is a variation of a traditional method using a micro-
scope and a glass slide. The presence of oxidative burst en-
zymes in HL-60 (human leukemia) cells has been demon-
strated using NBT using a series of experiments whereby
simultaneous measurement of NBT reduction, cell cycle
phase, and phagocytosis were made (200, 201), Because of
the problems of interpretation of this technique, it is not
widely used in the routine clinical laboratory as a flow cyto-
metric assay.

Clinical Evaluation

Chronic granulomatous disease (CGD) is an inherited disor-
der in which phagocytes have a defective oxidative metabo-
lism and an inability to produce hydrogen peroxide. The
clinical picture usually starts with staphylococcal dermatitis
and enlarged lymph nodes (202). Pulmonary changes are
prominent with bronchopneumonia, hilar lymphadenopathy,
and lung abscess formation (202, 203). The inflammatory
reactions are usually excessive and often develop into granu-
ioma formation despite appropriate antibiotic treatment. In-
fections usually begin in infancy or early childhood, how-
ever several reports describe.the neutrophil abnormality
discovered in adults (204-206). The disease is probably a
family of diseases with similar clinical manifestations and
different defective enzyme systems. Various enzyme defi-
ciencies that have been associated with CGD include cyto-
chrome bsss (207-211), glucose-6-phosphate dehydrogenase
(212, 213), flavoprotein (214), and a defect in protein or
protein phosphorylation p47 or p67 (211, 215). Neonates
can also have defective bactericidal activity (216), which
may be related to impaired production of the hydroxyl radi-
cal from superoxide (67, 216).

Neutrophils isolated from CGD patients fail to pro-
duce any fluorescence in the DCF assay. It is important to
be able to determine that there is a significant difference
between a possible CGD and 2 normal. Since availability
of CGD cells is probably unlikely in most clinical labora-
tories, the usual procedure is to utilize both stimulated
and unstimulated normal cells. The unstimulated normal
can serve as a satisfactory control for a possible CGD pa-
tient. Thus, by always running an unstimulated normal
with a stimulated normal any defect or partial defect
should be identified. Several reports demonstrate the de-
tection of possible carriers of CGD using non-flow-
cytometry (217) and flow-cytometry-based methods (194,
195). These reports demonstrate the use of the DCF assay
whereby neutrophils from heterozygous carriers of CGD
produced histograms midway between the unstimulated
and stimulated controls (195).
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Nonoxidative Bactericidal Mechanisms

Neutrophil cytoplasmic granules contain a variety of differ-
ent enzymes that do not require oxidative metabolism. These
enzymes are released into phagolysosomes and include pro-
teases, such as cathepsin D,E, and G (218), and clastase
(219); hydrolytic enzymes, such as phospholipase A (220)
and lysozyme (221); bacterial permeability increasing pro-
tein (222, 223); lactoferrin (218); and defensins (41, 42).

Cathepsin G, also known as chymotrypsin-like cationic
protein, is present in azurophilic granules and has both mi-
crobicidal and cytotoxic properties (224, 225). Cathepsin G
is a protease that inhibits bacterial oxygen consumption and
has microbicidal activity that does not depend on a primary
proteolytic attack (226-228).

Elastase is another azurophilic granule component that is
important for the degradation of the structural protein elastin
(219). Elastase is also capable of degrading bacterial celi
wall protein (229) and of potentiating the activity of cathep-
sin G (230) as well as the lytic activity of lysozyme (229).
Elastase is cytotoxic to endothelial cells in culture and may
be associated with neutrophil-mediated lung injury in em-
physema (231, 232).

Lysozyme is present in both azurophilic and specific
granules and acts by hydrolysis of the bacterial cell wall
(233). The hydrolytic activity is directed at the B-1-4 glyco-
sidic bond between N-acetylglucosamine and N-acetylmu-
ramic acid and thus is only effective against selected gram-
positive bacteria (228). Lysozyme is capable of killing gram-
negative bacteria if the bacteria are first acted on by toxic
oxygen products that damage the protective lipid envelope
(234).

Bacterial-permeability-increasing protein (BPI) is a ca-
tionic protein present in azurophilic granules. BPI contrib-
utes to the ability of neutrophils to kill gram-negative bacte~
riz, especially E. coli (222, 235, 236). BPI binds to and
permeabifizes the bacterial envelope (237). Elsbach and
Weiss proposed an initial ionic interaction that eventually ac-
tivates bacterial phospholipases (235). Neutrophilic phos-
pholipase A; in specific granules also increases bacterial en-
velope permeability and exerts a potent bactericidal effect
(220). Another cationic protein with optimal activity at low
pH is 37kD cationic protein. It is similar to BPI and is active
against several gram-negative bacteria (238).

Lactoferrin is a glycoprotein from specific granules with
binding sites for ferric iron (239, 240). Lactoferrin is a mem-
ber of the iron-binding transferrin family and can also be

-found in tears, semen, and human milk (241). Lactoferrin
exhibits bacteriostatic activity against gram-negative and
grum-positive bacteria due to its ability to chelate iron (242,
243). Bactericidal activity of lactoferrin has also been re-
ported against both gram-positive and gram-negative bacte-
ria (244). Lactoferrin deficiency due to specific granule defi-
ciency has been reported in human patients with recurrent
infections (223).

Defensins are another group of cationic proteins and are
the major protein constituent of azurophilic granules. Defen-
sins have a broad spectrum of activity in vitro against gram-
positive and gram-negative bacteria, fungi, and certain en-
veloped viruses (41, 44, 245-247). Defensins have also
demonstrated cytotoxicity of mammalian cells in culture
(248). '

Despite countless studies and many different probes, a
clear consensus about the microenvironment of the
phagolysosome is lacking. Studies with fluorescent pH
probes indicate the pH rises to 8.0 within a few minutes
of phagolysosome formation {(249). Within 15 minutes,
the pH is neutral and then continues to decrease to 5.5-
6.0 within 1-2 hours (249). A lower pH in phagolyso-
somes of thermal injury patients may contribute to re-
duced neutrophil intracetlular killing due to a lack of ini-
tial alkalinization (250).

Due to the complexity of the phagolysosome environ-
ment, it is often difficult to separate oxygen-dependent
mechanisms from oxygen-independent mechanisms. Consid-
erable synergy also exists between the two mechanisms,
which further hinders investigations to differentiate their ef-
fects.

Adhesion, Binding to Neutrophil Receptors

Integrins are a superfamily of heterodimeric, transmem-
brane glycoproteins that act as receptors on leukocyte sur-
faces (251) promoting several important cellular func-
tions, such as adhesion of phagocytes to surfaces,
phagocytosis, and diapedesis. Several related molecules
have been identified notably CD1la (LFA-1), CDl1b
(also called Mol, OKM-1, CR3, Mac-1), and CDllc
(p150,95) (252, 253). The three heterodimers share a
common B-unit of 95 kDa which is known as CD18,
Each has distinct a-subunits of 177 kDa (LFA-1, CD11a);
165 kDa, (Mac-1, CD11b), and 150 kDa (p150,95,
CD11c). The primary role of these molecules is in adhe-
sion-dependent functions and therefore they are found on
lymphocytes and monocytes as well as neutrophils. The
importance of integrins in normal immune function has
been demonstrated in patients with deficiencies in mRNA
for CD18 (154). Several reviews of the structure and
function of this family of molecules (254, 255) as well as
of the related clinical deficiency syndromes (256) have
been written.

While the overall function of integrins is to regulate
granulocyte diapedesis and migration into inflammatory
sites, the mechanism of action is less certain. It is hypothe-
sized that a primary role for the CD11/CD18 complex on
phagocytes is the regulation of secretion of toxic oxygen
mediators, enzymes, and other secreted products of activa-
tion. Thus, if the CD11/CD18 complex is involved in the
regujation of these cells, it may be one of the mechanisms
that only allows for the secretory response in appropriate cir-
cumstances such as adhered or aggregated neutrophils.
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Figure 24.10. Neutrophils stimulated by PMA demonstrate an in-
crease in the number of CD11b {CR3) receptors as shown in this fig-

The CD11/CD18 complex is not essential for neutrophil
activation by lipopolysaccharide (LPS) since CD18-deficient
patients show normal priming for enhanced release of super-
oxide anion in response to LPS (257). However, antibodies
to CDI18 were capable of inducing a defect similar to that
described in children with a genetic deficiency of the CD11/
CD18 integrins (258). Another report describes profound
chemotactic defects in patients suffering from dysmyelo-
poietic syndromes (DMPS), refractory anemia with exces-
sive blasts (RAEB), and acute nonlymphoblastic Jeukemia
(ANLL). However, in all of the cases reported, no abnor-
mality was detected by flow cytometry for granulocyte in-
tegrins (259). Thus, the chemotactic defects observed were
unrelated to the integrins in these patients.

Stimulation of neutrophils with PMA directly down-reg-
ulated the CD11/CD18 independent mechanism of neutro-
phil adherence to interlenkin-1 (IL-1), tumor necrosis factor
(TNF), or LPS pretreated human endothelial cells (260).
IL-1 stimulated PMN-endothelial adhesion (261) but IL-1
did not alter PMN degranulation or chemotaxis (262).

CD11b—~(CR3; Mac-1) Expression

This receptor is the primary glycoprotein associated with cell
adhesion found on neutrophils and regulates the adherence
and phagocytesis of particles opsonized with C3bi. Amacut
et al. (263) demonstrated the activation of neutrophils (via
increased CD11b expression) by complement fragments gen-
erated by new hemodialysis membranes.

- CD11b (CR3) has been shown to be critical in the phago-
cytosis of S. aureus and E. coli. In one study, E. coli en-
hunced CD11b expression despite not being phagocytosed.
This study further demonstrated an initial fall in CD11b ex-
pression despite not being phagocytosed. This study further
demonstrated an initial fall in CD11b after addition of bacte-
ria to the neutrophils, but a subsequent enhancement of ex-
pression after 5 to 10 min (264). In terms of oxidative re-

ure. Shown is a dose response of PMA and the resultant Increase In
the fluorescence from CR3-FITC-labeled antibody bound 1o the cells.

sponse, opsonized E. coli and S. aureus stimulated H,O,
production mieasured by flow cytometry. Nonopsonised E.
coli did not stimulate H,O; production despite an increase in
CD11b. As an example, Figure 24.10 shows the flow cyto-
metric histograms of neutrophil CD11b expression before
and after stimulation by PMA (0.1-100 ng/ml). The in-
creased fluorescence indicates increased expression of the
CD11b receptor on the neutrophil surface (above normal ex-
pression found onr unstimulated neutrophils).

Absence of the B-subunits will cause a profound and
debilitating deficiency in neutrophil function. An inherited
syndrome known as Leukocyte Adhesion Deficiency exists
where none of the B-subunits are synthesized (149, 153,
154, 265) (described above). Absence of these adhesion gly-
coproteins will prevent the chemotaxis and subsequent dia-
pedesis of neutrophils at inflammatory foci. Partial or in-
complete B-subunit deficiencies result in less severe
functional defects. Several chemotactic stimuli including
C5a, LTB,, and fMLP have been shown to rapidly increase
the number of CD11b receptors on nentrophils (266, 267)
and, in particular, activation of C5a increases the adhesive
characteristic of the neutrophil to the capillary endothelium.
Storage pools of CD11b receptors are contained in neutro-
phils, most likely in granule membranes (50, 268).

Other Functional Neutrophil Receptors

A recent report has described an alteration in the number of
CD16-positive neutrophils in HIV-I-infected individuals
(269). CD16 (Fc,RIN) is a relatively late differentiation anti-
gen on neutrophils, natural killer (NK) cells, and a subset of
T-cells, and is a low-affinity receptor for IgG (270, 271).
Fe,RII is anchored to the plasma membrane of neutrophils
via a phosphatidyl inositol glycan moiety (272, 273) that can
be released by chemotactic activation (274). One consistent
finding in HIV-infected patients is the frequent observation
of neutrophil defects in terms of chemotaxis, phagocytosis,
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microbicidal killing, and respiratory burst activity (275-
277). Other Fc receptors such as Fc,I (CD64) on monocytes
and neutrophils and Fc,If (CD32) found on monocytes, neu-
" trophils, eosinophils, basophils, B-cells, and platelets are
also important. Some studies have demonstrated that CD32,
but not CD64, can trigger activation of the respiratory burst
of neutrophils (278-280), whereas others have shown that
the glycosylphosphatidylinositol-linked CD16 receptor can
also trigger respiratory burst activity (281). Upregulation of

CD64 by vy-interferon on neutrophils results in cells that can’

" be activated to trigger an oxidative burst through that recep-
tor (282). Thus, with the possible therapeutic use of +y-in-
terferon for CGD patients, monitoring of upregulation of
these receptors on peripheral blood neutrophils may become
important. A recent flow cytometry method for quantitation
of receptor numbers in peripheral blood neutrophils has beén
reported (283). Thus, the evaluation of neutrophils, includ-
ing CD16 receptor expression, may be useful in certain pa-
tient groups. An excellent review of Fc receptors has re-
cently been published by van de Winkel and Anderson
(284).

Other Neutrophil Dysfunctions

A recent study by Lawton ¢t al. (285) demonstrates the ef-
fectiveness of preparations of human immunoglobulin for in-
travenous use in stimulating oxidative burst and chemilumi-
nescence of isolated human neutrophils. These studies
suggest there may be a beneficial therapeutic effect in se-
vere, life-threatening infections. Clear evidence is shown as
to the stimulation of oxidative burst but no consistent infor-
mation can be derived from studies of chemotaxis. The
mechanism of action is probably related to the passive im-
munization with preformed specific antibody. However,
there is little doubt that this study demonstrates significant
stimulation of neutrophil function directly by the intravenous
immunoglobulin, Another recent study has confirmed the
above observations of stimulation of oxidative burst in the
presence of intravenous immunoglobulin (286). These au-
thors have suggested that inflammatory reactions observed
occasionally during infusions in hypogammagiobulinemic
patients may well be related to neutrophil activation,

Clinical Prediction by Flow Cytometry

Several studies using flow cytometry have proved of value in
the evaluation of trauma. A major study by Valet demon-
strates that a multiparametric-multifunctional analysis of
neutrophils could accurately predict the course of disease
three days in advance of the clinical manifestation of pulmo-
nary or cardiovascular organ failure in 92% of samples from
47 patients (60). Tests used in this study included measure-
ments of phagocytosis and degradation, cell volume, intra-
cellular pH, and esterase activity. A significant value to this

study is the use of a small bench type mercury arc-based .

flow cytometer. Further, studies such as these demonstrate

the depth of knowledge that can be gained from a small num-
ber of cells when using a multiparametric approach.

Neonatal Infections and Neutrophil Function

An excellent review of the role of complement deficiencies
and related neutrophil function abnormalities in neonates has
been written by Berger (287). Important considerations in
neonates are the combined effects of minor abnormalities of
celtular function. Reduced levels of C3, low specific anti-
body titers, reduced mobility, or reduced numbers of neutro-
phils can combine to form a critical immune deficiency in
these patients. Adhesion glycoproteins are present in signifi-
cantly reduced numbers on stimulated neonate neutrophils
compared to adult neutrophils (288, 289). Several studies
have demonstrated an indication for granulocyte transfusions
in septic neonatal patients (290-292).

Antibodies against Neutrophils

The normal physiologic removal or destruction of neutro-
phils occurs constantly; however, accelerated removal can be
a result of an antineutrophil antibody. This immune neutro-
penia might be due to an auto- or alloantibody or may be
related to anti-HLA antibodies. In infants, alloantibodies can
result from maternal IgG antibodies that cross the placenta,
causing severe neonatal neutropenia (293). '

Antineutrophil antibody measurements by flow cytome-
try have become a useful clinical assay (294) because of the
relatively smalt number of neutrophils required and because
evaluations can be made of patient sera as well as of antibod-
ies detected on patient neutrophils. The flow cytometric
technique is well-suited for children with neutropenia since
evaluations can be made using only 1-2 mi of blood. Usu-
ally, there are sufficient cells for a simple flow cytometric
H;0; screen (using the DCF assay described above) to be
carried out on these neutrophils also.

Measurement of Neutrophil Antibodies

One important aspect in performing the antineutrophil assay
is in the selection of the normat controi neutrophils or neu-
trophil pool. Because of the possibility of damage to neutro-
phil surface antigens, the best method for preparation of neu-
trophils for this assay has proven to be one of the simplest
and has already been described above (overlay method).
Two washes in buffer remove serum proteins and platelets
leaving a leukocyte-rich suspension that is highly suitable for
evaluation of antineutrophil antibodies. The various cell
populations can easily be light-scatter gated on the flow cy-
tometer. Evaluation of histograms from patient and control
sera can determine the presenice or absence of antineutrophil
antibodies (usually IgG). The histograms shown in Figurc
24.11 are indicative of the presence of such antibodies in
patient sera. Patient neutrophils can also be evaluated for the
presence of surface-bound antibody if sufficient neutrophils
can be obtained from the patient.
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Figure 24.11. The presence of antineutrophil antibodies in patient
sera is demonstrated by the increasing fluorescence of gated neutro-
phils. Control-negative sera demonstrate no fluorescence while the
positive control sera are strongly positive,

Antineutrophil Cytoplasmic Antibodies (ANCA)

The presence of antineutrophil cytoplasmic antibodies has
been reported in a number of vascular diseases, including
uveitis (295) and glomerulonephritis (296, 297). Association
of high titers of ANCA is consistent with the diagnosis of
Wegener's granulomatosis and several reports have demon-
strated positive correlations (295-298). ANCA have also
been shown to stimulate oxidative bursts and degranulation
in normal neutrophils, effects that were more pronounced af-
ter priming with TNF (299). The same study was able to
demonstrate the presence of myeloperoxidase on the surface
of neutrophils, which was interpreted as indicating that neu-
trophils have ANCA antigens on their surfaces to interact
with ANCA (299). Measurement of ANCA by flow cytome-
try has been demonstrated (299a) and, in association with
immunofluorescence. such measurements may have signifi-
cant clinical utility.

CONCLUSION

The evaluation of neutrophil function can provide useful in-
formation on the capability of immune cells to perform nor-
mal operations. This information cannot be achieved by de-
terminations of numbers of neutrophils, or even the presence
of neutrophils, at a particular site. Specific defects of neutro-
phil function can become important, particularly when sec-
ondary to other underlying disease. The neutrophil interac-

tion with other cells, particularly endothelial cells, is
becoming better defined at the present time. It is clear that
the neutrophil is not an isolated, suicidal cell with little ef-
fect on other cells, tissues, or organs. It is these relationships
that are currently being studied using tools such as specific
monoclonal antibodies, a variety of valuable fluorescent
dyes, and technologies such as flow cytometry. While many
of the studies involving neutrophil function are of a research
nature, there are several important evaluations of clinical im-
portance. The neutrophil is the most prolifically produced
cell in the human jmmune system. Fuwre developments in
understanding the relationships between neutrophils and
other cells will be an important determining factor in the util-
ity of neutrophil function methods for clinical use.
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COLOR PLATE II

Figure 24.8. Neutrophils containing S. aureus (stained dark blue) after a 30-min incubation. Present are several neutrophils containing the
organisms as well as some free organisms (Wright stain).
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