
Learning with a Non-exhaustive Training Dataset
A Case Study: Detection of Bacteria Cultures using

Optical-Scattering Technology

M. Murat Dundar
Computer & Information

Science Department
IUPUI

723 W. Michigan St.
Indianapolis, IN 46202

dundar@cs.iupui.edu

E. Daniel Hirleman
School of Mechanical

Engineering
Purdue University
585 Purdue Mall

West Lafayette, IN 47907
hirleman@purdue.edu

Arun K. Bhunia
Department of Food Science

Purdue University
1160 Food Science Building

West Lafayette, IN 47907
bhunia@purdue.edu

J. Paul Robinson
Bindley Bioscience Center

Purdue University
1203 West State Street

West Lafayette, IN 47907
jpr@cyto.purdue.edu

Bartek Rajwa
Bindley Bioscience Center

Purdue University
1203 West State Street

West Lafayette, IN 47907
brajwa@purdue.edu

ABSTRACT
For a training dataset with a non-exhaustive list of classes,
i.e. some classes are not yet known and hence are not rep-
resented, the resulting learning problem is ill-defined. In
this case a sample from a missing class is incorrectly classi-
fied to one of the existing classes. For some applications the
cost of misclassifying a sample could be negligible. However,
the significance of this problem can better be acknowledged
when the potentially undesirable consequences of incorrectly
classifying a food pathogen as a nonpathogen are considered.

Our research is directed towards the real-time detection of
food pathogens using optical-scattering technology. Bacte-
rial colonies consisting of the progeny of a single parent cell
scatter light at 635 nm to produce unique forward-scatter
signatures. These spectral signatures contain descriptive
characteristics of bacterial colonies, which can be used to
identify bacteria cultures in real time. One bottleneck that
remains to be addressed is the non-exhaustive nature of the
training library. It is very difficult if not impractical to col-
lect samples from all possible bacteria colonies and construct
a digital library with an exhaustive set of scatter signatures.

This study deals with the real-time detection of samples
from a missing class and the associated problem of learn-
ing with a non-exhaustive training dataset. Our proposed
method assumes a common prior for the set of all classes,
known and missing. The parameters of the prior are esti-
mated from the samples of the known classes. This prior is
then used to generate a large number of samples to simulate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’09, June 28–July 1, 2009, Paris, France.
Copyright 2009 ACM 978-1-60558-495-9/09/06 ...$5.00.

the space of missing classes. Finally a Bayesian maximum
likelihood classifier is implemented using samples from real
as well as simulated classes. Experiments performed with
samples collected for 28 bacteria subclasses favor the pro-
posed approach over the state of the art.

The dataset and our implementation of the proposed ap-
proach is available on the web via the link:

http://www.cs.iupui.edu/∼dundar/kdd2009.htm

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology—clas-
sifier design and evaluation

General Terms
Algorithms

Keywords
non-exhaustive learning, bayes classifier, novelty detection,
anomaly detection, bacteria detection

1. INTRODUCTION
The goal of statistical learning is to build robust models

that, when deployed in a real-life application, should gener-
alize well to yet unseen examples of the sample population.
Among other factors that influence the generalizability of
a learning algorithm, the quality of the training dataset is
perhaps the most critical. Although a detailed discussion of
what makes a training dataset high quality goes beyond the
scope of this study, a representative training dataset is essen-
tial to the realization of any supervised learning algorithm
with high predictive accuracy.

There is not a well-defined definition of what makes a
training dataset representative, but two things to consider
are: is the list of classes (of informational value) complete,
i.e. exhaustive? If yes, are there sufficiently large number

279

of samples available from each class? It is very difficult to
come up with a clear-cut answer to the second question,
as how many samples considered sufficient for each class
depends on many factors: the dimensionality of the data, the
type of model being used (discriminative or a generative),
and the number of parameters to estimate with the data, to
name few. Besides, this would not matter much if the list of
classes is not exhaustive. In other words, if the existing set
of classes is incomplete, i.e., misses one or more classes of
informational value, no matter how many samples we have
for the existing classes the training dataset would still have
to be considered unrepresentative.

The easiest way to deal with this problem, as most tradi-
tional supervised algorithms do, is to ignore it. When this
direction is taken, a sample of a class that is not represented
in the training dataset would be incorrectly classified to one
of the classes available in the training dataset. This could
be a reasonable strategy for some domains where the cost
of misclassifying a sample is negligible. However, within the
framework of our current research, one could better appre-
ciate the criticality of a more rigorous approach, considering
the potentially unfortunate consequences of incorrectly clas-
sifying a pathogen as nonpathogen.

Learning with a non-exhaustive training dataset is an ill-
defined problem, and to our knowledge there are not many
studies in the machine-learning literature that explicitly ad-
dress this issue. One area of machine learning that has
drawn much attention lately is anomaly detection. Both
anomaly detection and the current problem of learning with
a non-exhaustive training set aim to detect samples that are
not represented in the training data, and in that regard they
can be considered similar. However, there is a well-defined
line between the two. In the dictionary an anomaly is de-
fined as something peculiar, irregular, abnormal, or difficult
to classify. So anomalies are outliers and they could be as
different from each other as they are from normal cases [15].
More specifically, anomalies do not necessarily have infor-
mational value and it is very difficult if not impractical to
model them. On the other hand, samples originating from
a missing class have informational value and just like any
class available in the training set they could be modeled,
were they known during training.

Another line of work that is more similar to the current
research is developed under the concept called “novelty de-
tection” [12, 11, 8]. Unlike anomalies, novelties originate
from a hidden or missing class and thereby have informa-
tional values. Novelty detection is sometimes referred to
as “novel class detection”. We use the term non-exhaustive
learning as opposed to novel class detection in this study,
mostly because the former is a more comprehensive prob-
lem involving classification (for samples of known classes) in
addition to novelty detection.

Despite the subtle difference in the interpretations of a-
nomaly and novelty detection, and non-exhaustive learning,
most of the early work in the anomaly and novelty detection
domain, centered around support estimation [14, 10], and
density-based models, can also be applied to non-exhaustive
learning. In addition to these, the traditional supervised
classification algorithms can be modified to accommodate
for learning with a non-exhaustive training set by redefining
the decision function to include an indecisive region. When
tested by a classifier, if a sample falls onto this region, it is
considered to originate from an unrepresented/missing class.

After reviewing the state of the art concerning these ideas,
we propose a Bayesian approach based on the assumption
that all classes are distributed according to a Gaussian dis-
tribution with a common covariance matrix. In this ap-
proach, we first define a hyperprior over the mean vectors
of class distributions and estimate its parameters with sam-
ples from known classes. Then, we use this hyperprior to
simulate the space of unknown classes. The final classifier
is implemented using real as well simulated data and a new
sample is rejected, i.e. the sample originates from a class
not represented in the training set, when the likelihood is
maximized for one of the simulated classes, otherwise the
sample is accepted, i.e. the sample originates from one of
the classes in the training set.

The rest of the paper is organized as follows. In Section 2
we present the detection of bacteria cultures using optical-
scattering technology as a case study. Section 3 reviews and
discusses the early work performed mainly in the area of
anomaly detection. We present the details of the proposed
approach in Section 4. Several experiments are performed
to compare the state of the art and the proposed approach
in Section 5. Finally, we conclude with a brief analysis of
our results and by providing future research directions.

2. DETECTION OF BACTERIA

2.1 Optical recognition of bacterial colonies
Traditional bacteria recognition methods based on anti-

bodies or genetic matching are labor intensive, time con-
suming, and involve multiple steps. Moreover, samples are
destroyed by these type of tests and are thus unavailable for
further confirmatory assessment. The tests rely on the use of
specific reporter molecules such as antibodies or nucleic-acid
probes coupled with fluorophores or enzymes, thus limiting
their broad application for multipathogen detection, or de-
tection of unknown pathogens.

Light scattering is a fundamental optical process whereby
electromagnetic waves deviate from a rectilinear path as a
result of non-uniformities in the medium that they traverse.
Light-scattering technology has been used before to interro-
gate bacterial cells in suspension [18, 19], as well as in flow
[13, 9]. The scope of this approach was very narrow and
only a limited number of bacterial species could be detected
successfully. Recently, we have discovered that interrogation
of bacterial cultures on the surface of agar in a semi-solid
state could provide a possible differentiation via distinctive
forward-scattering patterns [4, 1, 2]

The BARDOT (BActeria Rapid Detection using Optical
scattering Technology) system uses a laser (635 nm) to illu-
minate individual colonies and create a forward-scatter sig-
nature that is collected and subsequently analyzed (See Fig-
ure 1). In our earlier works we successfully demonstrated
that scattering properties of Listeria, E. coli, Salmonella,
Staphylococcus, and Vibrio colonies can be used to differen-
tiate the species occurring in food samples as well as those
isolated from experimentally infected animals [3].

2.2 Classification of known bacteria species
and strains

Forward-scattering patterns of bacterial colonies show de-
scriptive characteristics. Zernike moment invariants and
Haralick descriptors are used to capture these descriptive
features and to construct a scatter-signature image library.

280

(a) Salmonella Ty-
phimurium (Copenhagen)

(b) Vibrio orientalis
CECT629

(c) Listeria seeligeri V45 (d) Staphylococcus aureus
S-41

Figure 1: Representative examples of scatter pat-
tern from four bacterial strains. The differences in
the patterns can be seen with naked eye.

We have previously reported examples of BARDOT appli-
cation for classification and/or recognition of known (previ-
ously examined) bacterial species and strains. The classifi-
cation techniques utilized for classification of BARDOT pat-
terns included nonsupervised methods, partial least squares,
linear discriminant analysis, neural networks, and support
vector machines [4, 3]. The results obtained by classification
varied widely and depended not simply on the classification
technique used, but mostly on the type, quality, and num-
ber of features. However, no systematic study of methods
performance has been attempted up to date. Therefore the
comparison summarized in Section 5.2 is the first analysis
of this kind reported for BARDOT data.

2.3 Non-exhaustive Nature of the Training
Library

One of the main advantages of a label-free classification
technology such as BARDOT is the fact that it can po-
tentially recognize and classify bacterial species or strains
for which there are no available antibodies or genetic mark-
ers. It is well known that some infectious agents are char-
acterized by a high mutation rate, which can influence their
pathogenicity. Therefore application of molecular-biology
techniques for detection and classification are problematic
owing to the dependence of these techniques on very spe-
cific reagents.

BARDOT relies only on the physical properties of the bac-
terial colonies and can acquire scatter patterns of colonies re-
gardless of their genetic makeup; therefore it can be adapted
to automatically recognize any new forms of the pathogens
of interest, just by retraining the classifier using a new set
of scatter patterns formed by colonies. However, the clas-
sification approach currently used with BARDOT relies on
supervised training. In order to retrain the classifiers em-

ployed by BARDOT one would have to acquire a pure iso-
late of an unknown pathogen, measure the light-scattering
characteristic of the colonies, and use the scattering features
to define a new class. In practice, isolating a new class of
bacteria, and subsequently obtaining a sufficient number of
training samples, may turn out to be impractical or even
impossible. The described situation also brings a procedu-
ral and logical conundrum: one would have to employ an
independent testing procedure to find that a certain colony
represent a new class, not present in the BARDOT library.

The outlined problem could be solved if the analysis strat-
egy employed by BARDOT allowed for novelty detection
prior to or simultaneous with the process of classification.
If a novelty detection procedure were successfully imple-
mented, BARDOT methodology would be capable of rais-
ing an alarm when a new class of pathogens was detected
in tested samples. This crucial advancement in the treat-
ment of BARDOT patterns coupled with the simplicity of
BARDOT measurement would make this technique espe-
cially attractive for integration with highly automated sys-
tems operating for long periods without human supervision.

3. EARLY WORK
If all samples of the known classes are considered as posi-

tive, and all samples of the missing classes are considered as
negative, then the problem can be cast as a one-class prob-
lem with multiple subclasses with samples available for all
subclasses of the positive class and no samples for the nega-
tive class. In this setting, the missing samples of the negative
class can be considered as anomalies/novelties. One promis-
ing approach that has been heavily explored in this domain
is the support vector domain description technique (SVDD)
[14]. This method seeks to fit a tight spherical boundary into
the data to include most of the samples and reject possible
outliers. We also have more traditional techniques based on
density estimation to deal with one-class data. This group
usually fits a Gaussian density into the data, and rejects a
sample as an outlier if the likelihood is below some threshold.
Finally, we would like to include a third group of techniques
derived from discriminative classifiers into our discussion to
evaluate the performance of these classifiers for identifying
future samples.

3.1 Support Vector Domain Description
Support vector domain description (SVDD) is a kernel-

based approach for estimating the support of a distribution,
by fitting a spherical boundary around the target dataset
[14]. To avoid accepting outliers the volume of the sphere
is minimized. This problem is formulated as a constrained
optimization problem with the data included in the problem
in dot-product form. Hence the kernelized form of the prob-
lem is readily obtained [17]. Different kernel functions can
be used to change the ball-shaped spherical boundary into
more flexible boundaries, which allows for moderately pre-
cise control of the estimated support of the data. In what
follows we review the basic theory for SVDD and discuss
its use for learning with non-exhaustive training datasets as
outlined in this study.

We assume that each sample for the target class is char-
acterized by a feature vector xi ∈ Rd, where d is the dimen-
sionality of the feature space, i = 1, . . . , n, and n is the num-
ber of training samples available for the target class. The
dot product between two samples is denoted by (xi · xj) .

281

We want to minimize the radius of the sphere while making
sure all data remains within the sphere. This is cast as the
following constrained optimization problem.

min
(r,a)∈Rd+1

r2 + C
∑n
i ξi

s.t. ‖xi − a‖2 ≤ r2 + ξi
ξi ≥ 0

(1)

where r is the radius of the sphere and a ∈ Rd is its center.
The parameter C controls the trade-off between the volume
of the sphere and the total error induced by the samples left
outside the sphere. The dual form of the problem in (1) is,

min
α∈Rn

∑n
i

∑n
j αiαj (xi · xj)−

∑n
i (xi · xi)

s.t.
∑n
i αi = 1

0 ≤ αi ≤ C
(2)

where αi are the Lagrange multipliers and the center of the
sphere a is expressed as the linear combination of the sam-
ples xi, i.e. a =

∑n
i αixi. Therefore only samples xi with

nonzero αi is needed in expressing a. These samples are
called support vectors.

A new sample z is accepted when its distance to the center
is smaller or equal than the radius:

‖z − a‖2 = (z · z)− 2

n∑
i

(z · xi)

+

n∑
i

n∑
j

αiαj (xi · xj) ≤ r2 (3)

A sphere is certainly not flexible enough to fit data with
complex shapes. Since the data xi are in the dot-product
form in both the training and testing phases, using the ker-
nel concept initially introduced for support vector machines
(SVM) [17], the dot products in (2) and (3) can be replaced
by a predefined kernel function to obtain more flexible mod-
els. Replacing dot products with a predefined kernel cor-
responds to implicitly mapping the data from the input
space into a new feature space and evaluating (2) for this
new feature space. The spherical shape obtained in the fea-
ture space may correspond to arbitrary shapes in the input
space. Throughout this study we used the Gaussian kernel,
K(xi, xj) = exp(−‖xi − xj‖2 /σ2). Adjusting the width of
the kernel σ yields arbitrarily different shapes in the input
space.

Our discussion of SVDD so far has been limited to one-
class problems with only one subclass available. Recall that
we are dealing with a one-class problem with samples avail-
able from all subclasses of the positive class, where positive
class here is defined as the superset of all classes available
in the training dataset. One way to approach this prob-
lem is to fit all class data with one boundary, but this will
lose potentially useful subclass information. A more effec-
tive strategy would be to fit one spherical boundary to each
subclasses of the positive class, i.e. to each of the classes in
the training dataset, and reject a new sample as belonging
to the negative class, i.e. a missing class, if the sample does
not fall inside the support of any subclasses in the positive
set.

3.2 Density Estimation
In this approach the data are distributed according to a

probability density function f(x|θ). For a new sample z the
likelihood is computed as `(z) = f(z|θ) and z is considered
an outlier if `(z) is less than some predefined threshold τ .
The density function f(x|θ) is usually not known. The most
popular choice for modeling an unknown distribution is a
Gaussian model. The parameters θ = {µ,Σ} are estimated
using the training data and after removing the terms in the
log-likelihood expression that do not depend on z, the deci-
sion function to accept or reject a new sample z is obtained
as follows:

h(z) =

{
accept if g(z) ≤ τ
reject if g(z) > τ

(4)

g(z) = log(|Σ|) + (z − µ)TΣ−1(z − µ) and |Σ| is the deter-
minant of the covariance matrix Σ.

For non-exhaustive learning, a Gaussian density is fit for
each class, ωk, k = {1, . . . ,K} in the training dataset and
the decision function in (4) is updated as follows:

h(z) =

{
accept if mink {gk(z)} ≤ τ
reject if mink {gk(z)} > τ

(5)

where K is the total number of known classes.

3.3 Discriminant Functions with an Indecisive
Region

Discriminative models of the form f(x) = wTx + w0 are
used for the design of binary classifiers. The classifier coef-
ficient w and the bias term w0 are learned from the training
data by optimizing an objective function usually consisting
of two conflicting goals: minimizing the complexity of the
classifier and minimizing the error committed on training
samples. Support vector machine (SVM) [17], relevance vec-
tor machine (RVM) [16], linear Fisher’s discriminant (LFD)
[6], and logistic regression [7] are all members of this group.
The binary decision function for a new sample z is expressed
as

h(z) =

{
positive if f(z) ≥ 0
negative if f(z) < 0

(6)

In this binary setting the range of the discriminant func-
tion f(x) is divided into two regions, positive and negative.
A third region can be introduced to accommodate samples
with discriminant values close to the decision boundary. Un-
der this setting the decision function in (6) can be updated
as

h(z) =

 positive if f(z) ≥ ε
indecisive if −ε ≤ f(z) < ε
negative if f(z) < ε

(7)

where ε is a designated number.
For the multiclass problem, a one-against-one approach

can be taken to design K(K − 1)/2 binary classifiers, where
K is the number of classes. A new sample, z, is classified
by all K(K − 1)/2 and after each classification the sam-
ple is assigned to either the current positive/negative class
or labeled as indecisive using the decision function in (7).
Then the total number of times z is assigned to each of the
K classes is computed. If the maximum of these numbers

282

is less than the total number of times a sample is labeled
as indecisive, then the sample is rejected as belonging to a
potentially missing class.

This concludes our review of the potentially useful meth-
ods from the literature to deal with a non-exhaustive train-
ing dataset. We will implement these techiques to obtain a
baseline performance in Section 5 when evaluating the per-
formance of the proposed work with the bacteria dataset.

4. PROPOSED APPROACH
A training dataset is non-exhaustive when one or more of

the classes with informational value are not represented by
any samples. When a classifier is trained with this dataset,
a sample of a yet unseen class will be misclassified with
probability one, making the corresponding learning problem
ill-defined. A two stage design of the classifier can help alle-
viate this problem and make learning with a non-exhaustive
training dataset a more reasonable goal to achieve. The
first stage is a one-class classifier, which identifies whether
the sample is a member of one of the classes in the training
set or a member of a yet unseen/missing class. If the sample
is confirmed as belonging to one of the classes in the training
set, then the sample is fed to the second stage where it is
classified to one of the existing classes. If the sample is con-
firmed as belonging to an unseen class at the first stage, an
alert is raised and the sample is saved for follow-up analysis.

The classifier of the second stage can be trained using
any supervised classification algorithm. For an exhaustive
training dataset we implemented four supervised classifiers
from the literature for this task and summarized the results
in Table 5.2. What makes this problem challenging is the
design of the first stage classifier, where we only have sam-
ples from the known classes, i.e. the positive class. In what
follows we present a Bayesian approach to learning with a
non-exhaustive training dataset.

4.1 Bayesian Approach to Modeling Missing
Classes

We start with the notation first. The symbols Ω, Ψ, and
Γ denotes the set of all, known and missing classes respec-
tively with Ω = Ψ∪Γ; A, K and M are their corresponding
cardinalities with A = K + M . The conditional distribu-
tion of a class ωi ∈ Ω is defined by the density function
fi(x|θi) with θi being distributed according to a common
prior π(θ|β) shared across all classes. Let xij ∈ Rd, where d
is the dimensionality of the feature space, j = {1, . . . , ni}, ni
be the number of training samples for class ωi, ωi ∈ Ψ. For
notational simplicity all samples belonging to class ωi ∈ Ψ
are denoted in the matrix form as Xi = [xi1 . . . xinj].

The decision that minimizes the Bayes risk under a 0/1
loss-function assumption assigns a new sample z to the class
with the highest posterior probability. More specifically,

z ∈ ω∗i s.t. p∗i (θi|z) = max
i
{pi(θi|z)} (8)

where i = {1, . . . , A}. The classifier obtained by evaluating
this decision rule is known as maximum a posteriori classifier
(MAP). Using Bayes’ rule the above decision rule can be
rewritten as follows:

z ∈ ω∗i s.t. p∗i (θi|z) = max
i

{
fi(z|θi)πi(θi|β)

p(z)

}
(9)

where fi(z|θk) is the likelihood of z, π(θi|β) is the prior, and
p(z) is the evidence. The evidence p(z) is same for all classes
and hence can be removed from the above formulation.

The class distributions fi(x|θi) are not known. Before
we estimate fi(x|θi) for ωi ∈ Ψ, i.e. known classes, us-
ing the training dataset, we make some general assump-
tions that we can also carry to fi(x|θi) for ωi ∈ Γ. The
most common and also an effective way to deal with data
of unknown nature is to assume normal distributions for all
classes, ωi ∼ N(µi,Σi), θi = {µi,Σi}. Here we go one step
further and assume that all classes share the same covari-
ance matrix, ωi ∼ N(µi,Σ), ∀ωi ∈ Ω, where µi and Σ are
estimated using the training samples from the known classes
as follows:

Σ̄ =
1

K

K∑
i=1

1

ni − 1

(
Xi − µ̄ieTni

)(
Xi − µ̄ieTni

)T
(10)

µ̄i =
1

ni
Xieni (11)

Here eni is a vector of ones with the size of the vector
equivalent to the number of training samples in class ωi and
the bar sign on µ̄i and Σ̄ indicates the estimated values.

Since Σ is already estimated from the data and thus known,
the prior π(θ|β) is only defined over the mean vectors µi.
Next, we assume a Gaussian prior over µi with mean m and
covariance matrix S, i.e. µi ∼ N(m,S), β = {m,S}. Both
m and S are estimated from the samples µ̄i, ωi ∈ Ψ, which
were in turn estimated in (11). Once m̄ and S̄ are obtained
we can use the prior distribution π(µ|m̄, S̄) of the mean vec-
tors to simulate the space of missing classes, i.e. Γ. More
specifically, using this distribution we generate a very large
number of samples with each sample corresponding to the
mean vector of a supposedly missing class. To differentiate
between the mean vectors estimated from the data and the
mean vectors simulated from the prior, we use µ̃i for the
latter. Similarly, we use Γ̃ to differentiate the set of simu-
lated classes from the set of missing classes Γ. The Bayes
decision function in (9) is implemented using real as well as
simulated classes and a new sample z is classified according
to the following decision function

h(z) =

{
accept if ω∗i ∈ Ψ

reject if ω∗i ∈ Γ̃
(12)

That is, if the class that maximizes the posterior is a sim-
ulated class, then z is rejected as belonging to a potentially
missing class.

4.2 Implementation Challenges
We are estimating two sets of parameters. First, {µi,Σ},

ωi ∈ Ψ using xij ∈ Rd with ni samples and then {m,S}
using µ̄i ∈ Rd with K samples, where K is the number
of known classes. For large d, feature selection will help
alleviate the problem of the curse of dimensionality [5] and
will significantly improve parameter estimation for the first
set of parameters. However, the estimation of m and S will
continue to suffer from the limited number of samples K.
For d > K the inverse of S̄ does not exist. Even though the
inverse of S is not required to generate samples to simulate
the mean vectors of the missing classes, an ill-conditioned
matrix S̄ will prevent us from evaluating πi(θi|β) in (9).

283

One possible solution would be to use simpler covariance
models involving the trace or the diagonal forms of S̄, but
this will eliminate useful correlation information between
features. Therefore we restrict our model by assuming that
all classes are a priori likely given S̄ and m̄ and drop πi(θi|β)
in (9). The maximum a posteriori classifier (MAP) in (9)
becomes a maximum likelihood (ML) with this change and
the decision function in (9) becomes

z ∈ ω∗i s.t. p∗i (θi|z) = max
i
{fi(z|θi)} (13)

4.3 Algorithm for Learning with Real and
Simulated Classes

Algorithm 4.1. Algorithm for Training

(i) For each class in the training dataset, i.e. ωi ∈ Ψ
estimate Σ and µi using equations (10) and (11).

(ii) Then estimate m and S for π(µ|m,S) using estimates
of the mean vectors µ̄i, i = {1, . . . ,K}.

(iii) Generate M samples from the prior distribution π(µ|m̄, S̄).

Algorithm 4.2. Algorithm for Detection

(i) Evaluate `∗real = maxi
{
fi
(
z|µ̄i, Σ̄

)}
for ωi ∈ Ψ, i =

{1, . . . ,K}.

(ii) Evaluate `∗sim = maxi
{
f̃i
(
z|µ̃i, Σ̄

)}
for ωi ∈ Γ̃, i =

{1, . . . ,M}.

(iii) If `∗sim > `∗real reject z, i.e. z originates from one of the
missing classes; otherwise accept z, i.e. z originates
from one of the known classes.

5. EXPERIMENTS

5.1 Dataset Used
A total of 28 subclasses from five different bacteria classes

were considered in this study. The classes available are Es-
cherichia coli, Listeria, Salmonella, Staphylococcus and Vib-
rio. Table 1 shows the list of subclasses and classes consid-
ered in this study together with the number of samples col-
lected for each subclass using the BARDOT system detailed
in Section 2.

5.2 Experiment 1: Classification of Known
Bacteria Subclasses

In this experiment we design and implement several state-
of-the-art classifiers for the task of classifying already known
bacteria subclasses. The objective here is to train a 28-class
classifier to classify new samples at the subclass level, i.e.
when a yet unseen sample from one of the 28 subclasses
emerges, the classifier accurately assigns the sample to its
subclass of origin.

5.2.1 Classifier Validation
Classifiers are validated using a 10-fold cross-validation

approach as follows. First, we randomly shuffle the training
data and split the data into 10 groups using stratified sam-
pling to make sure that each of the ten folds has roughly an

Class Subclass Samples

E. coli

O157:H7 01 64
O25:K98:NM ETEC 67
O78:H11 ETEC 58
K12 ATCC 29425 65
O157:H7 6458 87
O157:H7 G5295 68

Listeria spp.

L. monocytogenes 7644 (1/2c) 91
L. welshimeri 35897 47
L. innocua F4248 59
L. ivanovii 19119 81
L. monocytogenes 19118 (4e) 94
L. monocytogenes V7 (1/2a) 98

Salmonella spp.

S. Enteritidis PT28 90
S. Enteritidis 13096 89
S. Typhimurium (Copenhagen) 95
S. Tennessee 825-94 78

Staphylococcus spp.

S. aureus S-41 67
S. hyicus T6346 69
S. aureus PS103 50
S. aureus 13301 46
S. epidermidis PS302 31
S. epidermidis 35547 45

Vibrio spp.

V. alginolyticus CECT521 88
V. campbellii CECT523 71
V. cincinnatiensis CECT4216 89
V. hollisae CECT5069 79
V. orientalis CECT629 96
V. parahaemolyticus CECT511 92
Total 2054

Table 1: The 28 subclasses from five genera (classes)
considered in this study. The last column lists the
number of samples collected for each strain using
the BARDOT system.

equal number of samples from each subclass. Then at each
stage one fold is left out as testing data and a classifier is
trained with the remaining 9 groups. Next, the test data
are classified with this classifier and class labels assigned to
each sample are recorded. Once all 10 groups are tested, the
estimated labels are compared with the actual labels and the
classifier accuracy is obtained. This process is repeated ten
times and the classifier accuracies averaged over ten runs
are recorded together with the standard deviations as the
10-fold cross-validation performance of the classifier.

5.2.2 Classification Methods Considered
The classification methods considered are support vector

machines (SVM) [17], linear Fisher’s discriminant (LFD) [6],
maximum likelihood classifier implemented with Gaussian
distributions (ML), and support vector domain description
(SVDD) [14]. The first two (SVM, FLD) uses discriminative
models, SVDD is a one-class classifier and ML Classifier is
density-based approach. In what follows we briefly discuss
the classifier design and parameter selection for each algo-
rithm.

Support vector machine: SVM is a binary classifier that
optimizes a hyperplane of the form f(x) = wTx + w0 to
maximize the margin between the two classes. Multi-class
design with SVM can be achieved using either the one-
against-one or the one-against-all scheme. Here we adopted
the one-against-one approach. For the 28-class problem
(28 × 27)/2 = 378 unique pairs of classes exist. Therefore
we trained 378 binary classifiers during a single run of the
training phase. For each binary classification problem one of
the classes is assumed positive and the other one negative.
A new test sample z is classified by all 378 classifiers and

284

after each classifier z is assigned to the class denoted posi-
tive if f(z) > 0, otherwise it is assigned to the class denoted
negative. At the end, the number of times z is assigned to
each class is counted and z is permanently assigned to the
class with the highest number of hits.

The tuning parameters for SVM are the type of the kernel
function, its parameter(s) and the cost C of misclassifying a
sample. Here we used the popular Gaussian kernel function
K(xi, xj) = exp

(
−‖xi − xj‖2 /σ2

)
. The width of the kernel

function σ and C are chosen jointly to optimize the 10-fold
cross-validation performance of the classifier. We considered
five different values for σ = {0.5, 0.75, 1, 1.25, 1.5} and three
different values for C = {10, 100, 1000}. The pair of values
with the best 10-fold cross-validation performance is found
as (σ = 1, C = 100).

As a standard data-preprocessing step we normalize each
feature to between -1 and 1 and implement the classifier with
the normalized data.

Linear Fisher’s discriminant: LFD is a binary classifier
that projects the high-dimensional data onto a line and per-
forms classification in this one-dimensional space. The pro-
jection, w, is chosen such that the ratio of the scatter matri-
ces (between and within classes) is maximized. Like SVM,
the classifier function can be expressed as a hyperplane of
the form f(x) = wTx+ w0. For the multiclass implementa-
tion of LFD we follow the same approach outlined above for
SVM.

The only design parameter for LFD is the regularization
constant. Regularization of the classifier coefficients w is
achieved by adding a small scalar times the identity matrix
to the within-class scatter matrix, i.e. S̄w = Sw +λI, where
I is the identity matrix and λ is the tuning parameter used
to regularize the classifier. Here λ = 5×10−4 is chosen from
the set of λ = { 5 × 10−6, 10−6, 5 × 10−5, 10−5, 5 × 10−4,
10−4, 5 × 10−3, 10−3, 5 × 10−2, 10−2 } as the value that
optimizes the 10-fold cross-validation performance.

Support vector domain description: The SVDD approach
is used to estimate the support of each of the 28 subclass
distributions. Here SVDD is used as a supervised classifier.
A new sample z is assigned to the class whose center a is
closest to z. The tuning parameters for this approach are the
width σ of the Gaussian kernel function and the cost C of
rejecting a sample as an outlier. As with the SVM classifier
above, σ, and C are chosen jointly to optimize the 10-fold
cross validation performance of the classifier. We considered
five different values for σ={0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1, 1.5, 2, 5} and three different values for C={1,
10, 100}. The pair of values with the best 10-fold cross-
validation performance is found to be (σ = .7, C = 10).

Bayes maximum likelihood classifier: This approach as-
sumes Gaussian distributions with a common covariance ma-
trix for each subclass. The covariance matrix and mean vec-
tors are estimated using equations (10) and (11).

The dimensionality of the dataset is d=240. We are esti-
mating 2402 = 57600 parameters for the common covariance
matrix and 28 × 240 = 6720 parameters for the mean vec-
tors using a total of 2054 training samples. To avoid the
curse of dimensionality [5], a sequential forward-backward
propagation feature-selection algorithm is implemented with
this classifier in a wrapper framework. This approach starts
with an empty subset and performs a forward selection suc-
ceeded by a backward attempt to eliminate a feature from
the subset. During each iteration of the forward selection

exactly one feature is added to the feature subset. To deter-
mine which feature to add, the algorithm tentatively adds to
the candidate feature subset one feature that is not already
selected and tests the 10-fold cross-validation performance
of the classifier built on the tentative feature subset. The
feature that results in the highest classification accuracy is
added to the feature subset. During each iteration of the
backward elimination, the algorithm attempts to eliminate
the feature whose elimination results in the highest classi-
fication accuracy. This process continues until no improve-
ment is gained.

We run this feature-selection algorithm 10 times and record
the features selected after each run. At the end of the ten
runs we sort the features according the total number of times
each feature is selected descending order and choose the top
80 features for the final classifier. A new sample z is classi-
fied using the decision function in (13).

5.2.3 Results and Analysis
The 10-fold cross-validation performance obtained by each

of the four classifiers is shown in Table 2. Results show that
LFD and SVM are equally competitive, with LFD yielding
slightly better results. The maximum likelihood classifier
looks promising but SVDD is not competitive as a super-
vised classifier.

SVM LFD ML SVDD
Acc. (%) 91.7 92.3 89.2 72.8
Std. 0.2 0.3 0.2 0.6

Table 2: The classifier accuracies achieved by the
four classifiers averaged over ten runs.

5.3 Experiment 2: Learning with a Non-ex-
haustive Set of Bacteria Subclasses

In this experiment we implement classifiers to detect sam-
ples of known bacteria subclasses, i.e. subclasses represented
in the training data, in order to separate them from samples
belonging to unknown classes.

5.3.1 Performance Evaluation and Classifier
Validation

In the previous experiment we assumed the training dataset
to be exhaustive and implemented several classifiers to clas-
sify samples of the bacteria subclasses. That was mainly a
classification task and as such we used classifier accuracy as
a performance metric to evaluate classifiers. In this experi-
ment we assume that the training dataset is non-exhaustive.
The goal is now to design a classifier that accurately de-
tects samples from the known classes and rejects samples of
the unrecognoized classes. In this framework, classifiers can
be more properly evaluated using sensitivity and specificity
metrics. Here sensitivity is defined as the number of samples
from known classes accepted by the classifier divided by the
total number of samples from known classes, and specificity
is defined as the number of samples from missing classes re-
jected by the classifier divided by the total number samples
from missing classes. For each classification method multi-
ple sensitivity and specificity values are obtained at different
operating points to plot the receiver operating characteris-
tic (ROC) curves. When comparing different classification

285

methods, the method with the largest area under the curve
is considered the best. The 10-fold cross-validation approach
of the previous experiment is modified to conform it to the
current task as follows.

First, we randomly shuffle the training data and split the
data into 10 groups using stratified sampling to make sure
that each of the ten folds has roughly an equal number of
samples from each strain class. This step is the same as the
one in the previous experiment. Then one group is left out
as testing data and from the remaining 9 groups, samples
of each of the 28 subclasses are removed, one subclass at
a time, to create 28 different non-exhaustive training sets.
This way all 28 subclasses are considered missing in turn,
albeit only one at a time. Next, 28 different classifiers are
trained, one for each of the 28 non-exhaustive training sets,
and test samples are classified with these classifiers as ac-
cept or reject. Once all ten groups are covered this way,
the sensitivity and specificity of the classification method
is computed by averaging out the sensitivities and specifici-
ties achieved by the 28 individual classifiers. This process
is repeated ten times and the sensitivity and specificity val-
ues averaged over ten runs are recorded together with the
standard deviations as the 10-fold cross-validation perfor-
mance of the classification method for detecting samples of
the known bacteria subclasses.

5.3.2 Classification Methods Considered
The classification methods of Experiment 1 are considered

for this experiment as well. Following the discussion in Sec-
tions 3 and 4, this time they are cast as one-class classifiers.

SVM and LFD: The binary decision rule used in Exper-
iment 1 for SVM and LFD is now modified to include an
indecisive range for f(x) as in (7). Once a test sample z
is classified by all K(K − 1)/2 = 378 binary classifiers us-
ing h(z) in (7), it is rejected if the total number of times
it is denoted as indecisive outnumbers any individual class
assignment. The same set of parameters optimized in Exper-
iment 1 for SVM and LFD are used for this part. Multiple
operating points on the ROC curve are obtained by varying
ε from 0 to 0.2 in increments of 0.01.

SVDD: Previously a new sample z was assigned to the
class whose center a is closest to z. This time a new sam-
ple z is accepted if it falls within the support of one of the
bacteria subclasses; otherwise it is rejected. The param-
eter C was optimized as 10 in Experiment 1. The same
value is used here. Multiple operating points on the ROC
curve are obtained by considering the set of values σ =
{0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5, 0.75, 1, 3, 5, 10} as the width
of the kernel function. Each different value of σ corresponds
to a different operating point on the ROC curve.

ML classifier: The same set of 80 features selected in Ex-
periment 1 for ML classifier is used. The decision to accept
or reject a new sample is made by evaluating the decision
function in (5). Since common covariance matrix is assumed
for all classes, the determinant term in (5) will be same for
all classes and hence can be dropped.

ML classifier with real and simulated bacteria subclasses
(MLS): The same set of 80 features selected in Experiment
1 for the ML classifier is also used here. The classifier is
trained following the steps in Algorithm 4.1. Since sub-
classes are considered missing, one at a time, as described
in Section 5.3.1), m and S are estimated using µ̄i of the
remaining 27 bacteria subclasses. Then the steps in Algo-

rithm 4.2 are followed and a new sample z is accepted if the
likelihood is maximized for one of the real subclasses and re-
jected if the likelihood is maximized for one of the simulated
subclasses. Multiple operating points on the ROC curve are
obtained by generating varying numbers of mean vectors
with the prior in step 3 of Algorithm 4.1, i.e. values of M =
{5, 10, 50, 100, 500, 1000, 5000, 10000, 20000, 35000, 50000} are
considered in this experiment.

5.3.3 Results and Analysis
The ROC curves obtained for classification methods are

plotted in Figure 2 together with the corresponding error
bars. In contrast to Experiment 1, the discriminative clas-
sifiers (SVM and LFD) performed very poorly in this ex-
periment. The corresponding ROC curves are only slightly
better than a random classifier. SVDD does not look very
promising either. The ML classifier implemented only with
known classes show some promise but the proposed approach
is by far the best.

Figure 2: ROC curves obtained for the five classifi-
cation methods considered in Experiment 2.

The training takes place offline. Even though offline train-
ing time is not critical, we provide some numbers to serve
as comparison between SVDD and MLS algorithm. All five
runs of the MLS algorithm took little less than two days of
computer time. The five runs for the SVDD took less than
five hours. All experiments are run on an Intel-based com-
puter (Intel Core 2 Duo T9300 2.50Ghz). The time taken
for classification is negligible for both approaches.

We ran the MLS algorithm for a varying number of sim-
ulated subclasses. The specificity and sensitivity values at
M=50,000 are 84% and 70% respectively. Generating speci-
ficities above 84% will require increasing M beyond 50,000,
which will further increase the computational time.

We believe SVDD suffers mainly from independent mod-
eling of each subclass. In the current framework the support
for each subclass is estimated independent of other sub-
classes. As a result, the supports of some classes overlap
with each other. A new sample frequently falls within the
support of more than one subclasses at the same time. This
negatively impacts the prediction accuracy of SVDD.

286

The number of samples as well as the number of subclasses
available in the training dataset is critical to a robust im-
plementation of the proposed MLS technique. As we have
more samples from each subclass, more reliable estimates
of the mean vector and covariance matrix can be obtained
for each subclass. In addition to improving the estimate of
the conditional distribution for each subclass, this will more
importantly help with the modeling of the prior. The pa-
rameters of the priors are estimated using the mean vectors
estimated with each subclass data. However, this does not
address the problem of limited sample size for the estima-
tion of the prior mean and covariance matrix. In the current
study these parameters are estimated using only 27 samples
(one subclass is considered missing in turn at a time) in an
80-dimensional space.

6. CONCLUSIONS
In this study we proposed an approach for learning with

a non-exhaustive training dataset. The technique is based
on Bayesian modeling of subclasses with real and simulated
data. The training dataset is used to estimate the condi-
tional distributions of each subclass. A Gaussian distribu-
tion with a common covariance matrix is assumed for all
subclasses. A Gaussian prior is defined on the mean vectors
and the parameters of this distribution are estimated using
the estimates of the mean vectors obtained for each class
conditional distribution. A large number of samples from
this prior are generated to simulate the set of missing sub-
classes. Finally, a Bayesian maximum-likelihood classifier is
implemented using real and simulated data.

This research was mainly motivated by the need for real-
time detection of bacteria cultures in food chains. We ap-
plied our technique to the dataset collected for this purpose,
which was composed of samples from 28 bacteria subclasses.
Even though the proposed approach is based on relatively
strong assumptions, results with this dataset clearly favor
the proposed approach over the state of the art, which is
mainly centered around support vector domain description
and well known discriminative classifiers.

Before this system can be deployed in real time to safely
and accurately detect samples of potentially harmful bac-
teria, the performance of the classifier needs to improve.
Toward this end, we believe relaxing some of the model as-
sumptions might help. More specifically, the common co-
variance matrix could be somewhat restrictive. Dropping
this assumption and defining another prior for the covari-
ance matrix (in addition to mean vectors) simulates more
flexible models, and might facilitate modeling of complex
data distributions.

7. REFERENCES
[1] E. Bae, P. P. Banada, K. Huff, A. K. Bhunia, J. P.

Robinson, and E. D. Hirleman. Biophysical modeling
of forward scattering from bacterial colonies using
scalar diffraction theory. Applied Optics,
46(17):3639–48, June 2007.

[2] P. P. Banada, S. Guo, B. Bayraktar, E. Bae, B. Rajwa,
J. P. Robinson, E. D. Hirleman, and A. K. Bhunia.
Optical forward-scattering for detection of listeria
monocytogenes and other listeria species. Biosensors
& Bioelectronics, 22(8):1664–71, Mar. 2007.

[3] P. P. Banada, K. Huff, E. Bae, B. Rajwa,
A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson,
E. D. Hirleman, and A. K. Bhunia. Label-free
detection of multiple bacterial pathogens using
light-scattering sensor. Biosensors & Bioelectronics,
24(6):1685–92, Feb. 2009.

[4] B. Bayraktar, P. P. Banada, E. D. Hirleman, A. K.
Bhunia, J. P. Robinson, and B. Rajwa. Feature
extraction from light-scatter patterns of listeria
colonies for identification and classification. Journal of
Biomedical Optics, 11(3):34006, 2006.

[5] R. E. Bellman. Dynamic Programming. Princeton
University Press, 1957.

[6] K. Fukunaga. Introduction to Statistical Pattern
Recognition. Academic Press, San Diego, CA, 1990.

[7] T. H. J. Friedman and R. Tibshirani. Additive logistic
regression: A statistical view of boosting. The Annals
of Statistics, 38, 2000.

[8] J. Muñoz-Maŕı, L. Bruzzone, and G. Camps-Valls. A
support vector domain description approach to
supervised classification of remote sensing images.
IEEE Transaction on Geoscience and Remote Sensing,
45(8):2683–2692, 2008.

[9] B. Rajwa, M. Venkatapathi, K. Ragheb, P. P. Banada,
E. D. Hirleman, T. Lary, and J. P. Robinson.
Automated classification of bacterial particles in flow
by multiangle scatter measurement and support vector
machine classifier. Cytometry. Part A: The Journal of
the International Society for Analytical Cytology,
73(4):369–79, Apr. 2008.

[10] B. Schölkopf, J. C. Platt, J. C. Shawe-Taylor, A. J.
Smola, and R. C. Williamson. Estimating the support
of a high-dimensional distribution. Neural Comput.,
13(7):1443–1471, 2001.

[11] B. Schölkopf, R. Williamson, A. Smola,
J. Shawe-Taylor, and J. Platt. Support vector method
for novelty detection. volume 12, 2000.

[12] E. J. Spinosa and A. C. Carvalho. Support vector
machines for novel class detection in bioinformatics.
Genet Mol Res., 4(3):608–15, 2005.

[13] H. B. Steen. Light scattering measurement in an arc
lamp-based flow cytometer. Cytometry, 11(2):223–30,
1990.

[14] D. M. J. Tax and R. P. W. Duin. Support vector
domain description. Pattern Recognition Letters,
20(11-13):1191–1199, 1999.

[15] J. Theiler and D. M. Cai. Resampling approach for
anomaly detection in multispectral images, 2003.

[16] M. E. Tipping. The relevance vector machine. In
S. Solla, T. Leen, and K.-R. Muller, editors, Advances
in Neural Information Processing Systems 12, pages
652–658. MIT Press, Cambridge, MA, 2000.

[17] V. N. Vapnik. The Nature of Statistical Learning
Theory. Springer, New York, 1995.

[18] P. J. Wyatt. Identification of bacteria by differential
light scattering. Nature, 221(5187):1257–8, Mar. 1969.

[19] P. J. Wyatt and D. T. Phillips. Structure of single
bacteria from light scattering. Journal of Theoretical
Biology, 37(3):493–501, Dec. 1972.

287

