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� Abstract
A recently introduced technique for pathogen recognition called BARDOT (BActe-
ria Rapid Detection using Optical scattering Technology) belongs to the broad class
of optical sensors and relies on forward-scatter phenotyping (FSP). The specificity
of FSP derives from the morphological information that bacterial material encodes
on a coherent optical wavefront passing through the colony. The system collects
elastically scattered light patterns that, given a constant environment, are unique to
each bacterial species and serovar. The notable similarity between FSP technology
and spectroscopies is their reliance on statistical machine learning to perform recog-
nition. Currently used methods utilize traditional supervised techniques which
assume completeness of training libraries. However, this restrictive assumption is
known to be false for most experimental conditions, resulting in unsatisfactory
levels of accuracy, poor specificity, and consequently limited overall performance
for biodetection and classification tasks. The presented work demonstrates applica-
tion of the BARDOT system to classify bacteria belonging to the Salmonella class in
a nonexhaustive framework, that is, without full knowledge about all the possible
classes that can be encountered. Our study uses a Bayesian approach to learning
with a nonexhaustive training dataset to allow for the automated detection of
unknown bacterial classes. ' 2010 International Society for Advancement of Cytometry
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RECENTLY, a number of new label-free biosensors have been reported in the literature
(1–3). These tools are label free in the sense that they do not use fluorescence labels but
use alternative detection modalities such as surface plasmon resonance, amperometric
and potentiometric measurements, or electrochemical impedance spectroscopy. How-
ever, these biosensors still utilize traditional biological recognition elements: enzymes,
antibodies, and nucleic acids. The only well researched and broadly utilized techniques
capable of true reagentless fingerprinting of bacteria are vibrational spectroscopic
methods (Raman and IR) (4–8), autofluorescence-based observations (9,10), MALDI-
TOF-based systems (11–13), and light-scatter analysis (14–17).

Light scatter-based methods provide an interesting alternative to vibrational

spectroscopies because they not only allow for a true label-free and reagentless

measurement capability but also rely on quantitative description of optical prop-

erties of the microorganisms rather than on their chemical composition. The

BARDOT (BActeria Rapid Detection using Optical scattering Technology) system

developed at Purdue University is a new optical sensor for detection and identifi-

cation of colonies of multiple pathogens that has shown great promise for distin-

guishing bacterial cultures at the genus, species, and strain level for Listeria,

Staphylococcus, Salmonella, Vibrio, and E. coli (18–20). The BARDOT method

uses the unique patterns formed by laser light scattering from bacterial colonies

to detect and classify pathogens (See Fig. 1).
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In some aspects, the approach to detection and classifica-

tion performed by BARDOT is conceptually similar to proce-

dures used in spectroscopic techniques. BARDOT relies on

pattern recognition and machine learning to evaluate colonies,

and on the basis of this information to recognize organisms

belonging to specific classes. Spectroscopic systems use che-

mometrics, which is fundamentally a specialized machine-

learning toolkit optimized for classification of spectral datasets

representing various classes of bacteria.

One presumable yet mostly unrealized advantage of

reagentless, label-free classification technologies based on phe-

notypic recognition of bacteria is the fact that they can poten-

tially recognize and classify bacterial species or strains for

which there are no available antibodies or genetic markers. To

achieve that, the classifier would have to be retrained with a

new set of ‘‘fingerprints’’ describing the new emerging patho-

gens. However, reliance on machine learning and multivariate

statistical analysis is also a weak point of BARDOT-, IR-, or

Raman-based technologies. These systems use knowledge

automatically discovered from pretested and prelabeled sam-

ples through a supervised learning, which is de facto a process

of developing predictive models using a library of known sam-

ples. Therefore, the predictive performance of these classifiers

depends to a great extent on the quality of the training

libraries. Unfortunately, the quality of training libraries for

any label-free biodetection system is potentially limited in a

number of ways.

The most important limitation of standard training

libraries is that only the most prevalent classes of bacteria are

available, as it is impractical to assume the presence of all the

classes in all tested samples. Additionally, the presence of back-

ground bacterial flora makes the task of dynamic learning and

class expansion really unattainable. The sheer number of path-

ogenic classes would not allow for a practical and manageable

training. Additionally, bacteria are characterized by a high

mutation rate, which can influence their pathogenicity. More

specifically, a bacterial serovar may go through a mutation to

form a new pathogenic serovar. New emerging pathogens may

also be rapidly introduced to a geographical area. Therefore,

any training library representing a set of bacterial classes is

inherently nonexhaustive, and collecting a fully exhaustive

library would be impossible. However, classifying pathogenic

bacteria from an unknown class as nonpathogenic would have

disastrous consequences.

The outlined problem could be alleviated if the analysis

strategy used by phenotypic recognition systems like BARDOT

allowed for novelty detection (i.e., automated detection of

unknown serotypes) simultaneously with the process of classi-

fication. If a novelty detection procedure were successfully

implemented, BARDOT methodology would be capable of

raising an alarm when a new serotype was detected in tested

samples.

In (21), we defined the nonexhaustive learning problem

and proposed for the first time a Bayesian approach based on

maximum likelihood evaluation of real and simulated classes

for new samples. In this method, all classes (known and

unknown) were assumed to have Gaussian distributions with

a common covariance matrix. A prior was defined over the

mean vectors of the classes, and its parameters were estimated

using samples of the known classes. A large number of samples

were generated from the prior to simulate the space of all

classes. A new instance was classified using a maximum likeli-

hood classifier and was considered a novelty if it was classified

into one of the simulated classes. This attempt, although it

looked promising, also had certain limitations. First, the com-

mon covariance assumption was quite restrictive. Second, the

Gaussian prior defined for the mean vectors required a very

large number of classes to be available in the training dataset

Figure 1. Examples of scatter patterns formed by scattering of a laser beam from colonies formed by different Salmonella serotypes: (A)
Agona, (B) Cholerasuis, (C) Indiana, (D) Kentucky, (E) Schottmuelleri, (F) Tennessee, (G) Typhimurium (Copenhagen).
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to avoid numerical problems in estimating the parameters of

the prior. Third, as the dimensionality increased, the number

of simulated classes necessary to achieve higher specificities

increased exponentially.

In this report, we use our new Bayesian approach based on

Wishart priors for detecting samples of Salmonella belonging to

unknown serotypes (i.e., serotypes not present in the training

library). The utilized algorithm creates new classes on the fly and

evaluates maximum likelihood with the updated set of classes,

gradually improving detection accuracy for future samples. Our

approach is tested with over 400 samples representing seven

common serotypes of Salmonella. We demonstrate that novelty

detection paired with automated classification is an attainable

goal, and that label-free phenotypic methods such as laser scat-

tering not only can be used to classify biological samples into

previously known categories but may also play a role as a auton-

omous detection system. We believe that the presented approach

is applicable not just to BARDOT methodology, but that with

minimal modification it can also be utilized to enhance other

label-free biosensors such as IR or Raman spectroscopy.

MATERIALS AND METHODS

Sample Preparation

The Salmonella enterica samples representing Agona, Cho-

lerasuis, Indiana, Kentucky, Schottmuelleri, Tennessee, and

Typhimurium (var. Copenhagen) serotypes were obtained from

Dr. Bhunia’s culture collection (Department of Food Science,

Purdue University). Rappaport-Vassiliadis R10 (RV) broth and

xylose lysine deoxycholate (XLD) agar were purchased from the

Accumedia division of Neogen Corporation (Lansing, MI). RV

broth is a nutrient broth selective for Salmonella. The XLD agar

is also selective for Salmonella and inhibits growth of most

other microorganisms. The Salmonella samples were cultured

in RV broth for 12–18 h at 378C . Cultures were then decimally

diluted in 20 mM phosphate buffered saline. Dilutions were

spread plated on XLD agar. The agar plates were incubated at

378C until the desired colony size of 1.3 � 0.2 mm was reached.

In most cases, this took about 12 h for all the tested Salmonella

serotypes. Agar plates containing over 30 colonies of the appro-

priate size were analyzed with the BARDOT instrument.

Light-Scattering Instrumentation

The current implementation of BARDOT consists of

three major components: colony counter/locator, forward-

scattering measurement device, and 2D motorized stage. The

colony locator/counter is composed of a red laser equipped

with a single-line projector (Lasiris 501L-635-5mW, Stocker

Yale, Inc. Salem, NH) and a line-scanner (Hamamatsu 512

pixel, 25 lm pitch, and 2.5 mm length). The line scanner

optics uses two cylindrical lenses (f 5 198 mm) and produces

a laser line of 101.6 3 0.5 mm. The laser-line scan generates a

2D transmission map of the agar plate that is subsequently

processed to identify centers of all the colonies. The forward-

scattering measurement device is composed of a laser diode

module (Lasiris 501L-635-1mW) and a monochromatic CCD

image sensor (Silicon Imaging SI1280 FM-CL, Silicon Imaging

Inc., Costa Mesa, CA) with 1280 3 1024 resolution and 6.7 3
6.7-lm pixel size. Motion control is provided by a three-axis

stepping motor (Velmex NEMA 17, Velmex, Bloomfield, NY).

The controller and the pulse encoder (E2-400-197 IHT, US

Digital, Vancouver, WA) communicate with an external CPU

via an NI PCI-6602 board (National Instruments, Austin, TX).

Pattern Preprocessing and Feature Extraction

The scatter patterns acquired using the sensor technology

were represented as greyscale bitmaps. Over 430 randomly

selected scatter patterns representing colonies belonging to

tested samples were further processed to obtain numerical rep-

resentation of the patterns.

The current implementation uses only a very simple nor-

malization procedure to correct the signal intensity of the scatter

images but does not correct any spatial distortion introduced

during the measurement process by improper laser positioning

or off-axis illumination. After normalization, the bitmaps were

rescaled and squares of 300 3 300 pixels representing centers of

the bitmaps were subjected to further analysis.

Two groups of features were used in this study: invariant

orthogonal moments and Haralick texture features (22–25).

Our current implementation of the classification system uses

pseudo-Zernike moments (PZMs) (26–28), which were com-

puted using pseudo-Zernike polynomials. The pseudo-Zernike

polynomials are a set of orthogonal polynomials that have

properties similar to those of Zernike polynomials. However, it

has been shown that pseudo-Zernike moments are less sensitive

to image noise than are conventional Zernike moments (29).

The 2D pseudo-Zernike moment, Zpq, of order p with

repetition q is defined using polar coordinates (r, y) inside the
unit circle as

Zpq ¼ p þ 1

p

Z2p

0

Z1

0

V �
pqðr; hÞf ðr; hÞrdrdh;

p ¼ 0; 1; 2; . . . ;1 0 � qj j � p ð1Þ

where Vpq
* (r, y) is the complex conjugate of the pseudo-Zernike

polynomial Vpq(r, y), which is given by Vpq(r, y) 5 Rpq(r)e
jqy ,

where r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; h ¼ tan�1 y

x

� �
; �1 < x; y < 1:

Here Rpq(r) is the real-valued radial polynomial defined as

RpqðrÞ ¼
Xp� qj j

s¼0

ð�1Þsð2p þ 1� sÞ!
s!ðp � qj j � sÞ!ðp þ qj j þ 1� sÞ! r

p�s ð2Þ

The pseudo-Zernike polynomials satisfy the following ortho-

gonality property:

Z2p

0

Z1

0

Vpqðr; hÞ � V �
lkðr; hÞrdrdh ¼ p

ðp þ 1Þ dpldpk; ð3Þ

where dnm is the Kronecker symbol.

To compute the pseudo-Zernike moments of a given

image, the center of the image is taken as the origin, and pixel
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coordinates are mapped to the range of the unit circle. Rota-

tional invariance is obtained by using the magnitudes of the

pseudo-Zernike moments as features. The details of pseudo-

Zernike moment computation can be found in our published

reports (18,20).

Another set of features was computed using gray-level co-

occurrence matrices (GLCMs). The GLCMs are routinely used

to quantify the number of occurrences at various distances

and angles of pixel intensity values with respect to each other

(23,24). The GLCMs were used to extract 14 low- and high-

frequency (depending on the pixel-to-pixel distance used in

the co-occurrence matrix) texture properties (so-called Hara-

lick texture features). We used the mean and the range of 12 of

these 14 features.

Formally, the Haralick features can be described as fol-

lows: let image I have Nx pixels in the horizontal direction and

Ny pixels in the vertical direction. Suppose also that there are

Ng distinct gray-tone levels in the quantized (digital) image.

Let Lx 5 1,2,. . .,Nx be the horizontal spatial domain, Ly 5
1,2,. . .,Ny be the vertical spatial domain, and G 5 1,2,. . .,Ng

be the set of Ng distinct gray levels (tones). The texture-con-

text information in image I is contained in the overall or ‘‘av-

erage’’ spatial relationship that the gray tones in image I have

with one another. More specifically, this texture-context infor-

mation is adequately specified by the matrix of relative fre-

quencies Pij with which two neighboring pixels separated by a

distance d occur on the image, one with gray level i and the

other with gray level j. Excluding the borders, a pixel has eight

nearest-neighbor pixels (north, south, east, west, northwest,

northeast, southwest, southeast). For angles quantized to 458
intervals, the unnormalized frequencies are defined by

Pði; j; d; hÞ ¼ #fðx1; y1Þðx2; y2Þjf ðx1; y1Þ ¼ i; f ðx2; y2Þ
¼ j; jðx1; y1Þ � ðx2; y2Þj ¼ d; ffððx1; y1Þ; ðx2; y2ÞÞ ¼ hg ð4Þ

where # denotes the number of elements in the set where the in-

tensity level of a pixel pair changes from i to j, the location of the

first pixel is (x1, y1) and that of the second pixel is (x2, y2), d is

the distance between the pixel pair, and y is the angle between the

two pixels. A symmetric co-occurrence matrix can be computed

by the expression P(i, j, d, y)0 5 (P(i, j, d, y) 1 P(i, j, d, y)T)/2.
The probability estimates are obtained by dividing each entry in

P(i, j, d, y) by the sum of all possible intensity changes with the

distance d and direction.

Note that only the distinct gray levels are used to build the

P matrices. If the gray levels are in the range [0, 255] and all are

used in the image, then P will be a 256-by-256 matrix (23,24).

RESULTS

Automated Classification of Salmonella Samples
Assuming Exhaustiveness of the Training Library

One hundred and ninety features were extracted from ev-

ery collected forward-scatter pattern. Examples of the Salmo-

nella scatter patterns are shown in Figure 1. The extracted fea-

tures were used directly for exploratory analysis of the

acquired results. Figure 2 show principal component analysis

(PCA), independent component analysis (ICA), and kernel

PCA mapping of the data. Some clusters of data points are

clearly identifiable on these plots. One of the obvious clusters

corresponds to the Salmonella Indiana population, whereas

the other well defined cluster contains colonies belonging to

Salmonella Agona. The other serotypes are much more diffi-

cult to differentiate. This demonstrates a requirement for a

supervised machine-learning approach, and shows that the

unsupervised exploratory analysis can visualize easily discerni-

ble differences between some patterns only, whereas the

remaining patterns cannot be easily separated.

In the next step, the experimental data were used to con-

struct and cross-validate a supervised training system. The

classifier operated in a single-instance fashion, meaning that it

classified a single colony (rather than a plate or a sample) at a

time. Three classifiers were evaluated: LDA, linear support

vector machine (SVM), and an SVM with a Gaussian kernel.

Ten-3 cross-validation was used to assess the quality of the

classifiers. The following measures of classification success for

the best of the tested classifiers are reported in Table 1: sensi-

tivity (true positive rate), specificity (1- false positive rate), ac-

curacy, and AUC (area under the receiver operating character-

istic curves for a binary classifier which classifies a given class

as ‘‘positive’’ and all other classes as ‘‘negative’’) (30). The clas-

sifiers were trained assuming that every tested colony repre-

sents an independent instance. The implementation of the tra-

ditional supervised learning system was realized using R lan-

guage for statistical computing. The e1071 package operating

within the R environment and allowing access to the libsvm

library was used for SVM-based classification (31,32).

All results so far were computed assuming full exhaus-

tiveness of the available training libraries. In the next step, this

assumption is explicitly rejected, and the presented technique

operates within a nonexhaustive framework.

Machine-Learning Approach to Real-Time

Detection of Unknown Serotypes

The presented system works in a multiclass setting and

incorporates sequential evaluation of new samples to perform

supervised classification and novelty detection. The main con-

tribution of this work is the special family of conjugate priors

defined over class distributions. This allows us to use the prior

information obtained from known classes to make inferences

about unknown classes as well. Our approach extends the con-

cept of novelty detection to set the stage for new class discov-

ery. By identifying new classes of informational value and

dynamically updating itself with these classes, the training

dataset becomes more representative of the sample popula-

tion. This results in a classifier with improved predictive per-

formance for future samples. In this study, we evaluate our

approach using a dataset consisting of seven strains of Salmo-

nella. Extensive testing of the proposed approach on 28-class

bacterial-detection and 26-class letter-recognition datasets

were provided in (33), where the proposed approach was also

compared against state of the art involving nonadaptive den-

sity-based approaches and support vector domain description,

as well as a recently introduced Bayesian approach based on

simulated classes.
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Maximum likelihood detection. Our implementation of the

outlined framework utilizes a density-based approach that

uses class-conditional likelihoods of samples to detect

unknown serotypes. Briefly, if the maximum of the class-con-

ditional likelihoods is above a designated threshold, then the

sample belongs to one of the classes in the training library

(i.e., known serotypes) and is assigned the corresponding class

label; otherwise, the sample is identified as belonging to an

unrepresented serotype, hence a novelty.

More formally, let O, D, and G denote the set of all,

known, and unknown bacteria classes (in this case Salmonella

serotypes), respectively, with O 5D|G; A, K, and M are their

corresponding cardinalities with A 5 K 1 M. The decision

that minimizes the Bayes risk under the 0/1 loss-function

Figure 2. Principal component analysis (A), independent component analysis (B), and kernel principal component analysis (C) plots show-

ing tested Salmonella dataset. Although the Agona and Indiana serotypes can be easily differentiated, the remaining data points do not
form distinguishable clusters. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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assumption assigns a new sample z to the class with the high-

est posterior probability:

z 2 x�
i s:t: p�i ðhijzÞ ¼ max

i
piðhijzÞf g ð5Þ

where i 5 {1,. . .,A} and yi is the parameter of the conditional

distribution associated with the class xi. The classifier

obtained by evaluating this decision rule is known as a maxi-

mum a posteriori classifier (MAP).

Using Bayes’ rule, the above decision rule can be rewritten

as follows:

z 2 x�
i s:t: p�i ðhijzÞ ¼ max

i

fiðzjhiÞpiðhiÞ
pðzÞ

� �
ð6Þ

where fi(z|yi) is the likelihood of z, p(yi) is the prior, and p(z)

is the evidence. The evidence p(z) is the same for all classes,

and hence can be removed from the above formulation. When

all classes are assumed a priori likely, p(yi) can be dropped

from (6) as well. This leaves us with the maximum likelihood

(ML) decision function for classifying z :

z 2 x�
i s:t: f �i ðzjhiÞ ¼ max

i
ffiðzjhiÞg ð7Þ

where z is considered a novelty if x�
i [ G, and a sample of a

known class if x�
i [ D.

As the set of classes is nonexhaustive, fi(z|yi) cannot be

computed for all classes, and as a result, the decision function

in (7) cannot be evaluated explicitly. We can express (7) in

terms of xi
* and rewrite it by separating fi(z|yi) of known and

unknown classes as

hðzÞ ¼ z is known if w � c
z is novelty if w < c

�
ð8Þ

where w 5 max{i:xi [D}{fi(z|yi)} and c 5 max{i:xi [G}{fi(z|yi)}.
As no data are available for unknown classes, c cannot be

explicitly estimated. In our experiments, we consider c as a

tuning parameter to optimize sensitivity at a desired specific-

ity or vice versa. In other words, c is the parameter allowing

us to adjust for the required compromise between sensitivity

and specificity of the classification system.

To summarize, if the conditional likelihood of a known

class for a sample z is less than c, then z is considered to be a

sample from an unknown class (a serotype not present in the

training library); otherwise, z is a sample from one of the

known classes (serotypes represented in the library) and thus

can be assigned a known class label.

The most common and effective way to treat data of

unknown nature is to assume Gaussian distributions for all

classes: xi 	 N(li, Si), yi 5 {li, Si}.

With this assumption in place, (8) becomes

hðzÞ ¼ z is known if minfi:xi2Dg giðzÞ � c
z is novelty if minfi:xi2Dg giðzÞ > c

�
ð9Þ

where gi(z) 5 log(|Si|) 1 (z 2li)
TSi

21(z 2li) is the negative
log-likelihood of class xi given z and |Si| is the determinant of

Si. For {i: xi [D}, li and Si can be estimated from class-condi-

tional data available in the training set.

When dealing with datasets containing limited numbers

of training samples and high dimensionality, the covariance

estimator plays an important role in the modeling of the class-

conditional distributions. The sample covariance can be

obtained using the following formula:

R̂i ¼ 1

ni � 1
Xi � lie

T
ni

� �
Xi � lie

T
ni

� �T

ð10Þ

where ni is the number of samples in class xi , eni is a vector of

ones of size ni , and li are the mean vectors estimated as

l̂i ¼
1

ni
Xieni ð11Þ

Here for notational simplicity, all samples belonging to class

xi are denoted in the matrix form as Xi 5 [xi1. . .xini].

Bayesian approach to covariance estimation. When the

number of samples available for a given class is less than d 1 1,

where d is the dimensionality, the sample covariance becomes

ill conditioned, i.e., the inverse does not exist. In practice, a

robust sample covariance requires many more samples than

d 1 1 because the number of parameters to estimate in a covar-

iance matrix increases as the square of the dimensionality. This

phenomenon is known as the curse of dimensionality (34).

Although the research in covariance estimators using a

limited number of samples with high dimensionality has a long

history with relatively well-established techniques, two main

approaches dominate the field. These are regularized discrimi-

Table 1. Number of training instances, sensitivity, specificity, accuracy, AUC, and standard deviation of AUC values for 103 cross-valida-

tion of the RBF-SVM classifier, computed for every classified serotype

CLASSIFIED SEROTYPE

NO. OF TRAINING

INSTANCES SENSITIVITY SPECIFICITY ACCURACY AUC AUC SD

Salmonella agona 76 0.9868 0.9972 0.9951 0.9997 0.000958

Salmonella cholerasuis 49 0.8775 0.9843 0.9715 0.9950 0.008322

Salmonella indiana 33 0.9697 1 0.9976 1 0

Salmonella kentucky 41 0.8780 0.9872 0.9761 0.9793 0.046659

Salmonella schottmuelleri 48 0.9167 0.9948 0.9855 0.9933 0.015494

Salmonella tennessee 94 1 0.9881 0.9903 0.9994 0.001241

Salmonella typhimurium (Copenhagen) 90 0.9444 0.9883 0.9785 0.9959 0.007536
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nant analysis (RDA) (35) and empirical Bayes estimators (36).

RDA considers the mixture of sample and pooled covariance

and an identity matrix as an estimator, with their weights

empirically estimated by cross-validation. On the other hand,

the Bayesian approach defines a pair of conjugate prior distri-

butions over the sample and true covariance matrices, and uses

the mean of the resulting posterior distribution as an estimator.

In RDA, multiple samples from each class are required to

estimate the mixing weights by cross-validation, and thus to

estimate the covariance matrix, whereas in the Bayesian

approach, the covariance estimator is a function of the parame-

ters of the prior distribution, which are estimated using samples

of the known classes.

Creating a new class for each detected novelty and defin-

ing the class by its mean and covariance matrix form the core

component of the proposed approach. The Bayesian approach

assumes a common prior for all classes (known and unknown)

and estimates the covariance matrix using the posterior mean.

In that regard, the use of the Bayesian approach makes intui-

tive sense in the nonexhaustive setting, mainly because we

assume that there is a common pattern among the class distri-

butions of all classes and that it can be captured with known

classes only, provided that a sufficiently large number of them

are available for training. Toward achieving this end, we use a

special family of conjugate priors to estimate the covariance

matrices of the class-conditional distributions.

The assumption of Gaussianity, i.e., xi 	 N(li, Si), implies

that the sample covariance matrices Si , i 5 {1,. . .,K}, where K is

the number of known classes, are mutually independent with fiSi
	 W(Si, fi). Here, fi 5 ni 2 1 and W(Si, fi) denotes the Wishart

distribution with fi degrees of freedom and a parameter matrix

Si. The inverted Wishart distribution is conjugate to the Wishart

distribution and thus provides a convenient prior for Si.

We assume that Si is distributed according to an inverted

Wishart distribution with m degrees of freedom as

Ri 	 W�1ððm� d � 1ÞW;mÞ; m > d þ 1 ð12Þ

The scaling constant (m 2 d2 1) before C is chosen to satisfy

E{Si} 5C. Under this setting, the posterior distribution of Si

given {S1,. . .,SK} is obtained as described in (37):

RijðS1; :::SK Þ 	 W�1ðfiSi þ ðm� d � 1ÞW; fi þmÞ ð13Þ

The mean of this posterior distribution is

R̂iðW;mÞ ¼ fi

fi þmþ d � 1
Si þ m� d � 1

fi þmþ d � 1
W ð14Þ

Under squared-error loss, the posterior mean is the Bayes esti-

mator of Si. The estimator is a weighted average of Si and C;

it shifts toward Si for large fi and approaches C for large m.

For a class with just one sample, the estimator returns C,

which implies that no matter what the dimensionality is, a

nonsingular covariance estimate can be obtained using this es-

timator, provided that C is nonsingular. The estimator is a

function of C and m, which are the parameters of the inverted

Wishart prior for Si. The closed-form estimates for C and m

do not exist. The study in (36) suggests estimating C by the

unbiased and consistent estimate Sp, i.e., the pooled covari-

ance, and maximizing the marginal likelihood of Si for m[ d

1 1 numerically to estimate m. In this study, we set C to Sp
but estimate m to maximize the classification accuracy for the

known classes by cross-validating over the training samples.

Here, Sp is the pooled covariance matrix defined by

Sp ¼ f1S1 þ f2S2 þ � � � þ fK SK

N � K
ð15Þ

where N is the total number of samples available in the train-

ing dataset.

So far, we have presented our framework for detecting novel-

ties in real time based on maximum likelihood (ML) evaluation

of samples using known classes. Our approach uses a pair of con-

jugate Wishart priors to estimate the covariance matrices of

known classes and detects novelties by thresholding the maxi-

mum likelihood evaluated with known classes. However, novelties

(samples belonging to unknown serotypes) originate from classes

of informational value that were not known at the time of train-

ing. Pooling novelties showing similar characteristics into indivi-

dual clusters may potentially recover some of these classes, and as

more classes of informational value are introduced, the training

library becomes more representative. This helps improve the pre-

dictive performance of the system not only for detecting novelties

but also for classifying future samples of newly discovered classes.

Our algorithm, referred as BayesNoDe, combines the ability to

perform novelty detection with new class discovery.

As formulated in (9), a new sample z ¼ <d is detected as

a novelty if min{i:xi[D}gi(z)[c. In other words, if the negative

log-likelihoods of known classes given z are all greater than

the designated threshold c, then the sample is considered a

novelty, i.e., belongs to a serotype not represented in the

training library.

When a sample is detected as a novelty, a new class is gen-

erated and defined by the parameters (l, S), where l is the

mean vector of this class and S is the covariance matrix, both

of which are not known. With just one sample, since S is not

defined and f 5 0, the posterior mean in (14) is equivalent to

C and thus the Bayesian estimator for S becomes R̂ ¼ W. The

mean vector l is estimated by l̂ ¼ z, i.e., the sample itself,

which follows from (11).

Subsequently, the set of known classes (serotypes) is aug-

mented with this new class. Therefore, for the next sample

available, the decision function in (9) is evaluated for classes

known initially as well as for newly created classes. If the sam-

ple is detected as a novelty, the above procedure is repeated to

generate another class. Otherwise, if the sample is classified

into one of the existing classes, then the system looks for a

class that minimizes the negative log-likelihood. If the sample

is assigned to a previously discovered class, then the class pa-

rameters l and S are updated using eqs. (11) and (14) for that

class. As there is more than one sample available now, R̂
becomes a mixture of the sample covariance and C. If, on the

other hand, the sample is assigned to a class known initially,

then no class update is necessary.
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EXPERIMENTAL DEMONSTRATION OF THE

DETECTION/CLASSIFICATION PROCEDURE

A total of 7 serotypes of Salmonella were considered in

this study. Table 1 shows the list of seven strains considered in

this study together with the number of samples collected for

each one using the BARDOT system. In our experiments, we

treated each strain as a separate class and used the number of

samples listed in Table 1 from each class for training.

Scatter patterns of the bacteria were characterized by a total

of 38 features involving moment invariants and Haralick texture

descriptors. The features were selected by the procedure

described for the exhaustive statistical machine-learning proce-

dure (20). Details of the feature extraction process and its

robustness when performed for other bacterial species are

described in our previous publications (19,20). As the training

dataset is nonexhaustive, the goal is to design a classifier that

accurately detects samples of known classes as known and those

of unknown classes as novelty. In this framework, classifiers can

be more properly evaluated using receiver operating characteris-

tic (ROC) curves. Here, sensitivity is defined as the number of

samples from known classes classified as known divided by the

total number of samples from known classes. Specificity is

defined as the number of samples from unknown classes

detected as novelty, divided by the total number of samples

from unknown classes. Multiple sensitivity and specificity values

are obtained to plot the ROC curves. Different operating points

are obtained by varying the threshold c designated in (9).

To evaluate our approach, the 431 colonies were ran-

domly split into two sets, as train and test, with 80% of the

samples being the training set and the remaining 20% being

the test. Stratified sampling was used to make sure that each

subclass was represented in both sets. This process was

repeated 10 times to obtain 10 different pairs of train-test sets.

Then, one serotype out of the seven available was randomly

selected, and all the samples belonging to this serotype were

removed from the training datasets. Consequently, this sero-

type became unknown for the trained classifier. The novelty

detection algorithm was trained with the resulting nonexhaus-

tive datasets and tested on the corresponding test sets. For

each data split, the area under the ROC curve (i.e., the AUC

value) was computed. The AUC values averaged over the 10

different train-test splits were recorded along with the stand-

ard deviation. To account for any possible bias introduced by

removing a serotype, the above process was repeated six more

times, each time removing a different one of the seven sero-

types available for this study. Each repetition involved rerun-

ning the same in silico experiment with a different nonexhaus-

tive subset of the original data. AUC values achieved by our

algorithm are included in Table 2 for all seven experiments. As

described earlier, these values represent the average of the ten

runs each executed with a different train-test split. The values

in the third column of the table indicate standard deviations.

Figure 3 shows the corresponding ROC curves.

DISCUSSION

The results presented in this report, as well as our previ-

ous publications, demonstrate that the label-free BARDOT

technique paired with supervised learning systems indeed per-

forms very well when libraries are assumed to be exhaustive,

the number of bacterial classes is relatively small, and samples

are assumed to be pure (no mixed cultures). This classification

success expressed using standard measures such as sensitivity,

specificity, and AUC is comparable to the best results reported

for other far more complex phenotypic detection systems

based on Raman spectroscopy, IR spectroscopy, or MALDI-

TOF (8,38–41).

It is important to note here that all phenotypic methods

(elastic light scattering, vibrational spectroscopy, protein pro-

filing, etc.) ultimately rely on the ability either to enrich the

sample or to isolate a pure cell population to quantitatively

describe the phenotypes. Specifically, the BARDOT pheno-

typic detection and classification technique cannot be used for

nonculturable microorganisms, as it relies on the ability to

observe colonies. However, provided that the organisms of in-

terest can be cultured and that the assumptions of library

exhaustiveness are fulfilled, a traditional supervised learning

system such as SVM can quite easily and successfully classify

the scatter fingerprints.

At this point, a fundamental question should be asked:

how likely is a biodetection system to encounter a new patho-

genic class that the system is not trained to recognize? And

consequently, how important is it to pursue effective solutions

to this problem for either BARDOT or any other biodetection

method using machine learning for identification of samples?

Unfortunately, the probability of encountering a new

class cannot be universally estimated. Depending on the parti-

cular biodetection application, the occurrence of new,

unknown, or unexpected pathogens can vary greatly. Effec-

tively, this problem becomes an issue of risk management. For

instance, in the case of identification of Listeria monocytogenes,

the classification difficulty is relatively mild. Only 13 serovars

are recognized, most cases of human listeriosis are caused by

serovars 4b, 1/2a, and 1/2b, and almost all large outbreaks in

humans are due to serovar 4b (42). As the number of serovars

is low, a traditional machine-learning system assuming an ex-

haustive library can be used quite successfully. However, liste-

riosis is a serious disease and has a very high mortality rate. It

disproportionately affects persons with impaired immune

systems or persons of certain ethnic groups. Therefore, an

argument could be made that a system accounting for nonex-

Table 2. AUC values averaged over 10 iterations for all seven

experiments run with the Salmonella dataset. A single serotype is
selected and considered unknown during each of the seven

experiments

REMOVED SEROTYPE AUC AUC SD

Salmonella agona 1.0 0.00

Salmonella cholerasuis 0.85 0.02

Salmonella indiana 1.0 0.00

Salmonella kentucky 0.88 0.03

Salmonella schottmuelleri 0.94 0.02

Salmonella tennessee 0.99 0.01

Salmonella typhimurium (Copenhagen) 0.97 0.01
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haustiveness would still perform better in case a new subclass

emerges owing to a mutation (43,44).

The constraints for risk assessment would be very differ-

ent for Salmonella. Although Salmonella has over 2300 identi-

fied serotypes, the 10 most common serotypes (Typhimurium,

Enteritidis, and Newport being the top three) together account

for over 70% of all cases of salmonellosis reported in 2002. No

known biodetection methods for rapid Salmonella subtyping

are capable of routine identification of all subtypes. If a BAR-

DOT system equipped with standard supervised learning tools

were used for Salmonella subtyping and tuned for recognition

of the most common serotypes, the probability of encounter-

ing a less common yet dangerous Salmonella would still be

highly significant, considering the history of Salmonella out-

breaks. Emergence of a new (i.e., previously unidentified) Sal-

monella serotype may dramatically affect public health — as

in the case of the highly antibiotic-resistant and previously

unknown serotype Newport, which was first identified

through the National Antimicrobial Resistance Monitoring

System surveillance in 1998 (45,46). The Newport serotype is

responsible for 10% of infections in the US. The most com-

mon Newport variant, Newport-MDRAmpC, accounts for

over 20% of tested isolates. This highly dangerous microor-

ganism is resistant to chloramphenicol, streptomycin, sulfa-

methoxazole/sulfisoxazole, tetracycline, amoxicillin-clavulanic

acid, ampicillin, cefoxitin, ceftiofur, and cephalothin (46,47)!

The reported results obtained using classification with a

nonexhaustive training library show that detecting unknown

or emerging pathogens using a phenotypic label-free detection

system such as BARDOT is indeed feasible. To test this notion,

we constructed a set of in silico experiments in which a known

class of bacteria was hidden from the classification system dur-

ing the training. These experiments simulate the condition of

nonexhaustiveness. A ‘‘true’’ nonexhaustiveness cannot be

tested in laboratory settings because it would require access to

an unknown and uncharacterized serotype, and simulta-

neously, a full knowledge of this serotype to verify whether an

unknown can be found. This obviously constitutes a logical

conundrum. However, removing known serotypes from a

training library and subsequently using a detection system to

identify these organisms faithfully simulates an encounter

with an emerging class of pathogens. The removal and subse-

quent detection/classification was tested for all seven available

classes. The results summarized in Table 2 and illustrated in

Figure 3 show that our classification system was indeed able to

find hidden classes despite the fact that the classifier has not

been previously exposed to their characteristic features. The

best result was obtained for serotype Agona. All the colonies

belonging to this serotype were correctly identified as belong-

ing to a new emerging class, when classifier encountered

Agona samples in the test dataset. The worst, yet still an im-

pressive result (AUC 5 0.85), was obtained for serotype Cho-

lerasuis. The important aspect of the presented approach is

that it is not based on any particular property of BARDOT-

related features, and therefore, it can potentially be applied to

other label-free measurement techniques, such as various

forms of vibrational spectroscopy.

Despite the demonstrated ability to find unknown sero-

types with the help of a Bayesian classification/detection algo-

rithm, phenotypic methods cannot compete with approaches

based on analysis of genetic information as far as thorough

characterization of emerging phenotypes is concerned. How-

ever, there are many practical settings in which phenotypic

approach may excel, and analysis of samples derived from

Figure 3. ROC curves computed for a BayesNoDe classifier tested with nonexhaustive Salmonella datasets. The seven curves represent
seven incomplete datasets with a single serotype removed from each. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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food matrices is one of them. Usually, 95–99.9% of tested

samples are negative for the presence of food-borne patho-

gens. Therefore, the use of expensive detection kits to deter-

mine that a sample is negative can be considered uneconomi-

cal and unnecessary. A phenotypic method such as BARDOT

can be used as an inexpensive tool that would allow prescreen-

ing of large numbers of samples. If a sample is found positive,

the colony(ies) can be picked up and verified by PCR or other

complex confirmatory tests.

ACKNOWLEDGMENTS

The content is solely the responsibility of the authors and

does not necessarily represent the official views of the National

Institute of Allergy and Infectious Diseases or the National

Institutes of Health.

LITERATURE CITED
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