
Journal of Microscopy, Vol. 226, Pt 2 May 2007, pp. 163–174

Received 1 September 2006; accepted 5 February 2007

Precision of light intensity measurement in biological optical
microscopy

T Y T U S B E R NA S
∗,†, DAV I D B A R N E S # , E L I K P L I M I K . A S E M‡,

J. PAU L RO B I N S O N† & B A RT E K R A J WA†
∗

Department of Plant Anatomy and Cytology, Faculty of Biology and Protection of Environment,
University of Silesia, Jagiellonska 28, Katowice, Poland

†Purdue University Cytometry Laboratories, 1203 S. West State St., West Lafayette, IN 47907,
U.S.A.

#Quantitative Imaging Corporation, 4190 Still Creek Drive, Burnaby, BC V5C 6C6, Canada

‡Purdue University School of Veterinary Medicine, 625 Harrison St., West Lafayette, IN 47907,
U.S.A.

Key words. CCD camera, dynamic range, fluorescence, intensity resolution,
noise, photon transfer, quantitative microscopy.

Summary

Standardization and calibration of optical microscopy systems
have become an important issue owing to the increasing role
of biological imaging in high-content screening technology.
The proper interpretation of data from high-content screening
imaging experiments requires detailed information about the
capabilities of the systems, including their available dynamic
range, sensitivity and noise. Currently available techniques
for calibration and standardization of digital microscopes
commonly used in cell biology laboratories provide an
estimation of stability and measurement precision (noise) of
an imaging system at a single level of signal intensity. In
addition, only the total noise level, not its characteristics
(spectrum), is measured. We propose a novel technique for
estimation of temporal variability of signal and noise in
microscopic imaging. The method requires registration of a
time series of images of any stationary biological specimen.
The subsequent analysis involves a multi-step process, which
separates monotonic, periodic and random components
of every pixel intensity change in time. The technique
allows simultaneous determination of dark, photonic and
multiplicative components of noise present in biological
measurements. Consequently, a respective confidence interval
(noise level) is obtained for each level of signal. The technique is
validated using test sets of biological images with known signal
and noise characteristics. The method is also applied to assess
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uncertainty of measurement obtained with two CCD cameras
in a wide-field microscope.

Introduction

Fluorescence microscopy is an established tool in biological
research. In modern biological microscopy, photomultipliers or
CCD cameras generating digital images replace the human eye
or photographical film as the means for fluorescence detection.
Hence, instead of using relative descriptors, one can quantize
fluorescence intensity in absolute (albeit arbitrary) units.
Recently, efforts have been made to apply optical microscopy
to obtain quantitative information on local concentration
and microenvironment characteristics of biomolecules in cells
and tissues (Andrews et al., 2002; Lichtenstein et al., 2003;
Huang & Murphy, 2004; Fricker et al., 2006). However,
practical implementation of quantitative microscopy requires
two elements. First, one has to convert fluorescence intensity
to absolute units (for example, a number of molecules of
interest). This task can be realized using an independent
technique to provide a calibration curve (Chiu et al., 2001;
Sugiyama et al., 2005). Alternatively, a light source of known
intensity (such as LED) can be used to construct a microscope
standard (Young et al., 2006). Second, one has to account
for the limited precision of fluorescence intensity estimation.
The impact of this uncertainty (measurement error) on
results of image-analysis procedures has long been recognized
(Nicholson, 1978; Young, 1996; Stelzer, 1998; Zwier et al.,
2004; Vermolen et al., 2005). Sources of uncertainty may
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include the instability of a light source, optical aberrations
and imperfections in alignment of elements in the optical
path (Zucker, 2006a, b). Proper design and maintenance
of an imaging system may eliminate or minimize these
factors. However, owing to the presence of dark current and
detector noise, precision of light registration in every digital
microscope is limited (Jericevic et al., 1989; Young, 1996;
Van Den Doel et al., 1998). Comprehensive characteristics
for a microscope camera may be obtained using a specialized
test bench (Howard, 2002; Christen et al., 2005), but this
approach is difficult to implement in a typical cell biology
lab. The measurement precision (noise) of a digital microscope
may be estimated using a standard slide made with uniformly
fluorescent polystyrene beads (Zucker & Price, 2001a, b) or a
piece of fluorescent plastic (Mullikin et al., 1994; Van Den Doel
et al., 1998). Using this technique, only the total measurement
noise corresponding to a single level of fluorescence intensity
can be computed. Furthermore, one may not easily extrapolate
the results obtained using such a simplified ‘standard’ sample
to the conditions under which the actual biological specimens
are imaged (owing to differences in emission and absorption
spectra, signal intensity, refractive index, etc.).

To alleviate these problems we adapt and extend a photon-
transfer technique (Janesick et al., 1987; Janesick, 1997;
Howard, 2002) to characterize signal and noise in fluorescence
microscopic imaging. The method does not require a test
bench; instead a time series of images of any stationary
microscope specimen is registered. The classical photon-
transfer method requires simply plotting noise as a function
of signal for a small group of pixels of a CCD after being
exposed to a stable, flat-field source of light. In the simplest
case the total noise is estimated from the variance of the
pixels. The proposed method is an extension of the photon-
transfer technique in the sense that the measured quantities
are based on the analysis of the variance of the detected signal.
However, the source of the signal in the proposed approach
is a fluorescent biological specimen, whose intensity is not
stable, that is, it can change during the measurement owing
to photobleaching and instability of the illumination source
(e.g. a mercury lamp). Also, spatially, the source of signal
is not flat, but inhomogeneous. The spatial and temporal
inhomogeneity were corrected using heterogeneity measure
(Amer et al., 2002) and data-based mechanistic modelling of
time series (Young, 1998;Young et al., 1999). Consequently,
the extended technique allows simultaneous determination
of dark, photonic, and multiplicative components of noise
under conditions of microscope imaging which closely mimic
a typical biological imaging experiment. Consequently, a
respective confidence interval (noise level) is obtained for each
level of signal obtained from a biological sample. The technique
is validated using test biological images with known signal and
noise characteristics. Finally, the method is applied to assess
uncertainty of an intensity measurement performed with two
different CCD cameras in a wide-field microscope.

Methods

Cells and fluorescence labelling

FluoCells prepared slide #2 (Molecular Probes) was used in
all experiments. The slide contained fixed bovine pulmonary
artery endothelial cells in which microtubules were labelled
using mouse anti-bovine α-tubulin monoclonal antibodies in
conjunction with BODIPY FL goat anti-mouse IgG antibody;
the cell nuclei were labelled with DAPI.

Microscope imaging

Images of the endothelial cells were registered using a Nikon
E1000 wide-field fluorescence microscope. The microscope
was equipped with a Nikon 40× Fluor oil-immersion objective
lens (NA 1.3) and a 100-W Hg arc lamp. The BODIPY
FL fluorescence was registered using a 475- to 495-nm
excitation filter (band pass), a 505-nm long-pass dichroic
mirror and a 525- to 565-nm emission filter (band pass). Two
monochromatic CCD cameras (Qimaging, Burnaby, Canada)
were used for image registration: a Rollera XR and a Retiga
4000R. Specifications for the cameras are summarized in
Table 1.

Neutral density filters were used to attenuate the flux
of excitation light: 128× (16×+8×) with the Rollera XR
and 16× with the Retiga 4000R. The microscope aperture
diaphragm was fully open, whereas the field diaphragm was
adjusted to match the field of view of the objective. Image
collection was carried out at room temperature. The cameras
were cooled to 25◦C below ambient.

Time series of 128 images of stationary (fixed) cells were
collected using full frame (no binning) at 5-s intervals.
The series were registered for each of the cameras operating at
three gain settings and for 0.25- or 0.75-s acquisition times.
Image acquisition was controlled using ImagePro Plus v 5.1
(Media Cybernetics, Silver Spring, Maryland).

Decomposition of pixel intensity changes

The source of signal used in our system is spatially
and temporarily inhomogeneous. The traditional method

Table 1. Specifications of CCD cameras.

Camera Retiga 4000R Rollera XR

Chip type (manufacturer) KAI-4021 (Kodak) VQE3618L (proprietary)
Chip size (pixels) 2048 × 2048 696 × 520
Pixel size (μm) 7.4 × 7.4 13.7 × 13.7
Pixel area (μm2) 54.76 187.69
Full well capacity (e−) 40.000 22.000
Dark current (e−/pixel/ s) 1.64 (cooled) 1.78 (non-cooled)
Readout noise (e−) 12 10
Quant. eff. at 545 nm 45% 70%
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of measuring the photon transfer-curve requires the CCD
detector to be exposed to a uniform and stable illumination
field. As the spatial and temporal uniformity decreases, it
becomes essentially impossible to approximate a photon-
transfer curve using standard techniques. Therefore the
first step in our method requires spatial and temporal
decomposition of the collected images using the unobserved
components methodology.

The fluorescence intensity changes in time were modelled
(separately for every image pixel) using three components:
a systematic trend (related to photobleaching), a periodic
component (associated with fluctuation of the excitation light
source) and an irregular component (which represents noise).
Following (Young, 1998) we can study our system using
a simple univariate version of the unobserved components
model: yt = Tt + St + et, where t denotes the value of
the associated pixel intensity at the tth time point, y is the
observed value, T is a trend (or low frequency component), S
is a periodic (or ‘seasonal’ component) and e is an irregular
component. All the calculations were executed on a pixel-by-
pixel basis utilizing the CAPTAIN modelling toolkit (Young,
1998). First, the stochastic trend component was estimated
using the integrated random walk (IRW) model:

It = Tt + et

Tt = 2Tt−1 − Tt−2 + ηt
. (1)

where It is registered fluorescence intensity (at tth time point),
Tt is the smoothed intensity at tth time point, Tt−1 and Tt−2

are values of Tt at two previous time points, et is measurement
noise (zero mean, varianceσ 2

e ) andηt is the system disturbance
(zero mean, variance σ 2

η).
The ratio of variances corresponding to the system

disturbance and the measurement noise (noise variance
ratio, NVR, σ 2

η/σ 2
e ) was set to 10−4. This value was chosen

empirically so that the Tt represented the components
corresponding to time period larger than 64 samples (280 s)
but excluded components corresponding to shorter periods.
The instantaneous values of et and ηt were fitted (using least
linear squares) so as to minimize difference between Tt and It at
thesetNVR.HenceTt representedasystematictrendassociated
with photobleaching of biological samples. The trend was
subtractedfromtheobservedintensity(I t).Thede-trendeddata
were used to isolate periodic components of intensity changes
(corresponding to periods smaller than 64 samples −280 s)
with the dynamic harmonic regression (DHR):

I d
t =

s/2∑
j=0

[a j t cos(ω j t) + b j t sin(ω j t)] + et

ω j = 2π j
s

, a j t = a j t−1 + ηt, b j t = b j t−1 + ηt,

(2)

where s is the maximum order of the periodic component, Id
t is

detrended fluorescence intensity, et is measurement noise and
ηt is system disturbance.

The DHR model is an extension of classical Fourier analysis
with the number of frequencies limited by the number of
observations. The optimal order of DHR (number of significant
periodic components, s/2) was estimated using the Akaike
Information Criterion (AIC) (Akaike, 1974, 1981). The AIC
is a measure of the goodness of fit of an estimated statistical
model. Since the AIC also includes a penalty, which increases
with the number of estimated parameters, it discourages
overfitting. Subsequently, the IRW (Eq. 1) and optimal order
DHR (Eq. 2) were used jointly to fit the trend and periodic
component to the initial fluorescence intensity data (It). One
should note that NVR was optimized in this step as well to
minimize residual variance globally. The sum of the trend
and periodic components represented the true instantaneous
fluorescence intensity (signal, Si

t) at every time point. Hence,
the instrumental noise (for a pixel at a given time point) and
its variance (for a signal level) were:

Ni
t = ∣∣Si

t − I i
t

∣∣ , VS=F =

∑
i ,t

δSF (Ni
t )2∑

i ,t
δSF

, (3)

where N is the noise, S is the signal, I is registered fluorescence
intensity at ith and tth points of the image time series, VS =F is
variance of the signal at Fth level.

The estimates of other two components of time series
(periodic component and trend) can be further used to
characterize the stability of the light source and the
photobleaching rate of the fluorochromes used in the
experiment. However, they were utilized here only to provide
an estimate of total signal level (fluorescence and background)
and thus to calculate the corresponding level of total noise.

Calculation of noise levels and background signal

In order to estimate the background signal, uniform dark
image regions were identified for each time series. These
regions (represented using binary masks) comprised pixels
characterized by fluorescence intensity and local fluorescence
heterogeneity that were smaller than 10% of their respective
maxima. The heterogeneity was measured using the algorithm
described in (Amer et al., 2002). Briefly, eight directional high-
pass filters were applied to an image and resulting images were
added. 10% of pixels having the smallest sums were chosen
to represent the most homogenous image regions. Average
intensity (Ib) calculated in dim and homogenous regions was
taken as the background (i.e. pixel value of an image registered
in the absence of fluorescence). The noise variance (V, Eq. 3)
was plotted against the signal corrected for background (Sc =
S − Ib). A quadratic function was fitted to these data in order
to characterize signal–noise dependency:

V = A + P Sc + MS2
c , (4)

where M, P and A are estimators of the signal variance
associated with the multiplicative, Poisson (photonic) and
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additive noise components. The standard deviation of Ib (
√

B)
was calculated to estimate background noise.

Algorithm validation

A time series of 128 images of fluorescent endothelial cells
was registered (0.750-s acquisition time) as described in the
previous paragraphs. A time-averaged image was calculated
and subjected to filtering with hybrid median (3 × 3 kernel).
Thebackgroundvaluewassetto0andtheprocessedimagewas
used as a template for generation of synthetic test images. Series
of 128 test images were generated by addition to the template of
various amounts of additive and Poisson noise and background
intensity. Noise and background levels were calculated from
the test series using the algorithm described in the previous
paragraphs. Estimated parameters were plotted against their
true counterparts.

Calculation of significant intensity levels and photon
equivalence units

Owing to the presence of noise in the images, not all intensity
differences can be considered significant. Thus, the number of
meaningful intensity levels is lower than the nominal dynamic
range provided by the cameras (12 bits, 4096 levels). Hence,
the significant levels were calculated iteratively using the
following algorithm (see the Appendix):

1. Input Ib, A, P, M (Eq. 4),

2. Set k = 0,

3. Do:

4. Set k = k + 1,

5. Set Ik
med = Ib,

6. Set σ (I k
med) =

√
A + I k

med · P + (I k
med)2 · M,

7. Set Ik
high = Ik

med + 1.96 · σ (Ik
med),

8. Set Ik+1
low = Ik

high,

9. Calculate Ik+1
med so that Ik+1

med − Ik+1
low = 1.96 σ · (Ik+1

med ),

4. Loop while Ik+1
med <4095

5. Terminate & output vectors I & k.
The algorithm produces a set of Ik

medfor which Ik
med − Ik−1

med =
1.96[σ (Ik

med) + σ (Ik−1
med )]. The Ik

med values smaller than Imax

represent intensity levels significantly different from one
another with probability of 0.95, which corresponds to 95%
confidence in the sense of Student’s t test (hence the 1.96
factor). The choice of confidence interval was arbitrary.
However, similar calculations can be performed for every
confidence level. The set of values was used to segment the
representative images by setting all pixel intensities (Ir) to
the nearest significant level. A periodic lookup table was
used in order to visualize clearly numerous intensity levels
(which corresponded to pixel-to-pixel intensity differences) in

raw data and few intensity levels which were significant in
processed data. If a non-periodic lookup table (256 colours)
with continuous tone transition (similar to that used in
Fig. 6) was employed pixels of similar intensities (values)
would be represented by almost identical colour. Results of
such operation would be equivalent to reduction of number of
intensity levels performed in an arbitrary manner (as opposed
to strategy based on statistical model and described earlier in
this section). The two CCD cameras used differed with respect to
photon noise level (represented by P coefficient in the Eq. 4) and
registered signal intensity (which depended on the excitation
light flux). Therefore the pixel intensity in the images was
scaled by:

Is = Sc
E f

E f 0
√

P
, (5)

where Sc is background-corrected signal, Ef 0 is the attenuation
factor of the neutral density excitation filter used with Rollera
XR (128) and Ef is the respective attenuation factor for Rollera
XR or Retiga 4000R.

Thescaledintensity(Is)representsthesituationinwhichone
digital unit corresponds to one detected photon under similar
imaging conditions, which comprise the same fluorescence
excitation flux, identical camera settings (gain, acquisition
time and offset) and similar specimen (fluorescently labelled
cell from the same population). A non-periodic continuous
tone (from red through green to blue) lookup table was used
to represent intensity in scaled images.

Results

Algorithm validation

A test set containing a series of synthetic images generated
by addition of defined amounts of Poisson noise, additive
noise and background signal (see Materials and Methods)
was subjected to the proposed noise-analysis procedure. The
estimated values of these noise parameters were plotted
against the respective true values (Fig. 1) in order to estimate
accuracy of the algorithm. The Poisson noise levels were
estimated precisely and accurately (Fig. 1A). Lower precision
was obtained for additive noise (Fig. 1B) and background
intensity (Fig. 1C). These two parameters were estimated
accurately in all cases but one. When additive noise (σ = 33.3)
was present and background intensity was set to 0 (arrow in
Fig. 1), underestimation of the former and overestimation of
the latter occurred. However, such a situation is unlikely to
be encountered if microscope imaging is performed correctly
(as discussed further). Furthermore, no multiplicative noise
was present and the estimated coefficients for this type of noise
(Eq. 4) were below 0.001 ± 0.0001 (data not shown). Hence,
it may be concluded that the proposed algorithm renders
accurate estimations of the Poisson noise, additive noise and
background signal.
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Fig. 1. Accuracy of the noise estimation algorithm. Estimated levels of the
Poisson noise (A), additive noise (B) and dark signal (C) are plotted against
true levels of these parameters. Standard deviations are indicated with
error bars. Arrow indicates a case when additive noise (σ = 33.3) was
present and background was set to 0.

CCD test

Poisson noise. Square roots of Poisson noise coefficients (Eq. 4)
were plotted against the respective values of gain of the two CCD
cameras (Fig. 2). The amount of this type of noise depended
linearly on the gain for the Retiga 4000R (Fig. 2, triangles
up) and the Rollera XR (Fig. 2, squares). This dependence was

Fig. 2. Poisson noise of CCD cameras. Square roots of the respective fit
coefficients (

√
P, Eq. 4) are plotted against the gain of the Retiga 4000R

(triangles up) and the Rollera XR (squares). The noise was measured at
0.250-s(A)and0.750-s(B) imageacquisitiontimes.Fittedlinearfunctions
are represented with lines: solid (Retiga 4000R) and long dash (Rollera
XR).
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Table 2. Dependence of Poisson noise on CCD gain.

Acq. Time (s) Slope (SLp) Intercept (INp) Correlation (r2)

Retiga 4000R 0.250 0.0948 ± 0.007 −0.028 ± 0.005 0.98
0.750 0.0986 ± 0.006 −0.018 ± 0.002 0.99

Rollera XR 0.250 0.1521 ± 0.012 0.059 ± 0.009 0.98
0.750 0.1731 ± 0.023 −0.027 ± 0.003 0.99

The coefficients of the fitted linear functions (P = SLp × gain + INp) from Fig. 2A (0.250 s) and Fig. 2B are given with their standard errors.

not affected by acquisition time (compare Figs 2A and B, see
Table 2) or offset. One should note that the noise approached
0 with decreasing gain, which indicates that this parameter
depended only on the signal (amount of detected light). On
the other hand, the two cameras differed with respect to the
increase of the Poisson noise with gain (Table 2). As a result a
higher amount of this form of noise was present in the images
registered with the Rollera XR than in images registered with
the Retiga 4000R.

Additive noise. Square roots of additive noise coefficients
(Eq. 4) were plotted against the respective values of gain of
the two CCD cameras (Fig. 3). Like Poisson noise, the amount
of additive noise depended linearly on the gain for the Retiga

4000R (Fig. 3, triangles up) and the Rollera XR (Fig. 3,
squares). This dependence was not affected by the offset and
acquisition time (compare Figs 3A and B, see Table 3). A small
residue of additive noise was predicted at the gain of 0 (Table 3).
This value was close to the difference between the additive (

√
A)

noise and (
√

B) background noise (Figs 3C and D). Hence both
these parameters may be regarded as estimators of the dark
noise. One may note that images registered with the Rollera
XR contained more dark noise than images registered with the
Retiga 4000R.

Background signal. Mean values of background signal (see
Materials and Methods) were plotted against the offset
(Fig. 4). The background signal increased with acquisition

Fig. 3. Additive noise of CCD cameras. Square roots of the respective fit coefficients (
√

A, Eq. 4) are plotted against the gain of the Retiga 4000R (triangles
up) and the Rollera XR (squares). The noise was measured at 0.250-s (A) and 0.750-s (B) image acquisition times. Fitted linear functions are represented
with lines: solid (Retiga 4000R) and long dash (Rollera XR). The respective differences between the additive noise (

√
A, Eq. 4) and the background noise

(
√

B) of the Retiga 4000R (triangles up) and the Rollera XR (squares) measured at 0.250-s (C) and 0.750-s (D) acquisition times are plotted against the
gain as well.
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Table 3. Dependence of additive noise on CCD gain.

Acq. Time (s) Slope (SLa) Intercept (INa) Correlation (r2)

Retiga 4000R 0.250 1.148 ± 0.101 1.25 ± 0.79 0.99
0.750 1.394 ± 0.092 0.56 ± 0.03 0.99

Rollera XR 0.250 2.030 ± 0.150 −1.07 ± 0.10 0.98
0.750 2.087 ± 0.371 −0.37 ± 0.22 0.99

The coefficients of the fitted linear functions (A = SLa×gain+INa) from Fig. 3A (0.250 s) and Fig. 3B are given with their standard errors.

Fig. 4. Background signal of CCD cameras. The intensity (Ib, digital units) was plotted against the offset of the Retiga 4000R (triangles up) and the Rollera
XR (squares). The background was measured at 0.250-s (A, C, E) and 0.750-s (B, D, F) image acquisition times. The gain of the cameras was set to 2 (B),
5 (A, D), 10 (C, F) or 15 (E).
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Table 4. Significant (p = 0.95) intensity levels of CCDs with the corresponding (minimal) number of bits needed to code these levels.

Offset (AU)

0 150 400

Acq. Time (s) Gain Levels Bits Levels Bits Levels Bits

Retiga 4000R 0.250 5 74 7 72 7 70 7

10 36 6 36 6 34 6

15 24 5 24 5 23+ 5
0.750 2 190∗ 8 186 8 178 8

5 74 7 72 7 69 7

10 36 6 36 6 34 6
Rollera XR 0.250 5 49 6 48 6 47 6

10 24 5 23 5 23 5

15 15 4 15 4 15 4
0.750 2 84∗ 7 81 7 78 7

5 36 6 35 6 34 6

10 20 5 19 5 18+ 5

The highest obtained numbers of levels are indicated with asterisks, the lowest with crosses.

time (compare Figs 4A, C and E with Figs 4B, D and F) and
gain (compare Figs 4A and B, C and D and E and F) for the
two CCDs. A linear increase of the background signal with the
offset was detected as well. It should be noted that the two CCDs
exhibited similar levels of background signal.

Practical applications

Calculation of practical dynamic range. The two cameras
registered images with 4096 nominal intensity levels (12-
bit digitization). However, owing to the presence of noise not
all differences in intensity between pixels may be considered
significant (see Materials and Methods), and consequently
practical dynamic resolution is lower than nominal. Hence, the
number of significant intensity levels (with 0.95 probabilities)
was calculated at several values of CCD settings (gain,
acquisition time and offset) and are presented in Table 4.

The number of significant levels decreased conspicuously
with increasing gain of the two CCDs. Furthermore, a moderate
reduction of practical dynamic range was observed when
the offset was increased. Increase of acquisition time did not
significantly affect the number of levels for the Retiga 4000R.
However, a decrease in the practical dynamic range occurred
in the Rollera XR at longer acquisition times. In general,
higher practical dynamic range was obtained with the Retiga
4000R than with the Rollera XR. In order to illustrate this
notion, representative images were segmented (see Materials
and Methods) and displayed with significant intensity levels
only (Fig. 5).

Estimation of equivalent number of detected photons. One
should note that the cameras operated at different fluxes

of excitation light and therefore different levels of emitted
fluorescence. Hence the number of equivalent detected
photons was estimated from the Poisson noise and the images
were normalized to represent similar excitation intensities
(see Materials and Methods). One should note that these
figures represent situation in which both detectors operate
as ideal photon counters The scaled representative images
(Fig. 6) demonstrate that under similar imaging conditions one
may expect significantly higher number of detected photons
(approximately 2.5×) per pixel with the Rollera XR (Figs 6A
and C) than with the Retiga 4000R (Figs 6B and D).

Discussion and conclusions

Quantitative microscopy requires knowledge about the
precision of light detection. Comprehensive characteristics of
detector performance can be obtained from a microscope, with
specialized test benches (Christen et al., 2005; Howard, 2002).
The proposed technique provides less detailed results but uses
a time series of images of a real biological specimen. Hence,
it can be implemented in any biological microscopy lab to
test the precision of light intensity measurement obtained
from any fluorescence microscope. Noise estimation in the
proposed technique is performed in a manner similar to
the photon-transfer curve method (Janesick, 1997; Howard,
2002; Christen et al., 2005; Kinney & Talbot, 2006). However,
in the proposed technique, estimation of background is
executed separately, which eliminates manual segmentation
of the photon-transfer curve (Howard, 2002; Kinney &
Talbot, 2006). Moreover, signal estimation is carried by
decomposing the intensity change in time on a pixel-by-pixel
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Fig. 5. Significant (p = 0.95) intensity levels in the images registered with the Retiga 4000R (A, C) and the Rollera XR (B, D). Raw images (A, B) were
segmented (C, D) to represent the intensity levels with 95% confidence (see Materials and Methods). The images were multiplied by 1.078 so that the
brighter of the two (A, C) occupy whole intensity scale The segmented images are shown in pseudo-colour using a periodic lookup table (see Materials and
Methods). Scale bar 10 μm.

Fig. 6. Numbers of equivalent photons in the images registered with the Retiga 4000R (A, C) and the Rollera XR (B, D). The images are scaled (see Materials
and Methods) and presented in pseudo-colour using a continuous tone non-periodic lookup table (see Materials and Methods). Scale bar 10 μm.
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basis instead of by calculating a simple average over a
set of image pixels (Janesick, 1997; Howard, 2002) or
time points (Howard, 2002; Kinney & Talbot, 2006).
The presented data were processed using an IRW/DHR
modelling approach, but most likely similar results could
have been obtained utilizing other methods of time series
decomposition and forecasting such as ARIMA (autoregressive
integrated moving average). One may generate a photon-
transfer curve in a simpler way using a locally uniform
fluorescent specimen (i.e. one in which different regions
correspond to different fluorescence intensity) like a partially
defocused slide. However, this technique would require spatial
fluorescence distribution to be fully characterized (in order
to segment the uniform regions correctly). The proposed
technique is designed for non-uniform specimens but does
not require any prior knowledge about spatial fluorescence
distribution. Moreover, temporal invariability of the registered
luminescence is not a prerequisite for application of this
method. Hence, the technique may be used with biological
specimens, which typically exhibit spatially and temporally
heterogeneous fluorescence. Furthermore, the specimens may
be imaged under non-ideal (realistic) conditions which involve
photobleaching of fluorescent labels (Song et al., 1995; Van
Oostveldt et al., 1998; Kunz & MacRobert, 2002; Bernas et al.,
2004) and instability of illumination source (Zucker & Price,
2001b).

One should note that the algorithm required a stationary
biological specimen to register image time series. Therefore,
presence of axial (z) or lateral (xy) specimen drift might impair
accuracy of the presented method as it might contribute to
pixel intensity variation. In our experience total lateral (xy)
displacement (stage drift) as high as 1 μm per an image
time series did not alter the values of additive and Poisson
by more than 1%. Similarly, axial drift up to 0.5 μm did not
significantly affect the performance of the algorithm. However,
no systematic studies were carried out and the images were not
corrected for drift. Instead care was taken to avoid axial and
lateral drift by maintaining constant room temperature and
eliminating airflow. As a result, possible drift in the presented
experiments (10 min) did not exceed the indicated values.

The presented implementation used data from 128 images
registered at 5-s intervals. Hence one might capture periodic
components characterized by period of 10s or higher
(according to the Nyquist criterion). On the other hand, the
systematic trend, which corresponded to photobleaching of
BODIPY, might be determined accurately if the specimen were
illuminated for 10 min. Furthermore, when 128 images were
registered one might expect typically 2000 data points (on
average) corresponding to each signal level (of 4096), even
with a camera equipped with a small CCD chip (VQE3618L,
696 × 520 pixels). Therefore, a photon-transfer curve could
be determined in a reliable manner by simple least linear
squares fitting in our imaging conditions. Nonetheless, with
different conditions (slower photobleaching kinetics, better

illumination stability etc.) a smaller number of images and
a shorter registration time might give similar accuracy.
Hence, one may optimize data-registration conditions if some
information on stability of fluorescent probes and of the
imaging system is available.

The algorithm provided accurate estimation of
multiplicative noise, Poisson noise, additive noise and
dark current in an orthogonal manner (independently of
one another). Errors occurred only when additive noise was
present and background intensity was set to 0. One should
note that since the images contained only non-negative values
the actual distribution of additive noise was not symmetric,
which increased the apparent background intensity and
consequently introduced bias in the calculation of Poisson
noise. One should note that such a situation is unlikely if
the detector offset is adjusted correctly, so that the registered
image contains no zeros.

The validated algorithm was applied to characterize
performance of two CCD cameras often used in our laboratory
for biological fluorescence microscopy. Images registered using
the Retiga 4000R exhibited the lowest level of Poisson noise
per pixel. The level of Poisson noise in the Rollera XR was
approximately 1.80 times higher than in the Retiga 4000R
(at any gain). Levels of this type of noise are proportional to the
square root of the number of detected photons. One may note
that these ratios correspond well with the square roots of ratios
of respective pixel areas (1.85, see Table 1). On the other hand
one might expect a higher number of registered photons (per
unit of light-sensitive pixel area) in the Rollera XR than in the
Retiga 4000R owing to the difference in quantum efficiency.
One should note that levels of background noise (

√
B) and

additive noise (
√

A) were similar in all the cameras tested.
Thus, the variability in the background signal may account for
all the noise that is independent on the fluorescence intensity.
All the tested cameras exhibited similar mean values of the
background signal (Ib). However the level of additive noise was
approximately 1.61 times higher in the Rollera XR than in the
Retiga 4000R. This value is lower than square root of the ratios
of respective pixel areas. One may expect the background noise
tobeproportionaltothesquarerootof thepixelsize.Conversely,
the nominal dark current of the Rollera XR was lower than that
of the Retiga 4000R (see Table 1).

Output of the proposed algorithm was used to estimate
the practical intensity resolution (dynamic range) of cameras
used to perform biological imaging. Owing to the presence
of noise, the significant difference in intensity is usually
greater than one intensity unit. Consequently the maximum
number of significant intensity levels is lower than expected
from the specifications (12-bit, 4095 levels). One may note
that the total noise level of the Rollera XR was higher than
that of the Retiga 4000R. Consequently the highest available
dynamic resolution of the Rollera XR is lower than that of the
Retiga 4000R. On the other hand, the number of registered
photons (per pixel) may be expected to be higher in the former
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than in the latter. This notion is confirmed by the fact that the
scaled images registered with the former camera were brighter
that those registered with the latter device. Therefore, under
similar imaging conditions one may expect that the number
of populated significant intensity levels will be higher with the
Rollera XR than in the Retiga 4000R.

The described test can be performed with any CCD cameras
used for fluorescence imaging, in order to establish optimal
imaging conditions for a given type of biological specimen.
One may note that at low levels of emitted fluorescence (fewer
than 100 photons reaching detector pixel) the intensity
resolution of a typical CCD is determined primarily by additive
noise, which comprises spurious, dark and readout noise
components. On the other hand, the number of populated
intensity levels depends on detector sensitivity, which is
determined by quantum efficiency and gain. Therefore, at low
levels of fluorescence, EMCCDs and ICCDs, despite high dark
and amplification noise, are likely to outperform conventional
CCDs owing to their high gain. However, at higher levels of
fluorescence (more than 100 photons per pixel), where the
noise is dominated by the photonic component, the presence
of amplification noise (i.e. noise factor higher than 1) in
EMCCDs and ICCDs may render performance of these detector
inferior to that of conventional CCDs. Using the presented
algorithm one may verify these theoretical predictions for a
given imaging system.

Detailed information on practically available intensity
resolution of cameras makes it possible to compare intensities
in different image regions in a statistically meaningful manner.
Moreover, using error propagation theory one may perform
a similar estimation for every combination of pixels. In
other words, one may assign confidence intervals to every
parameter derived from image-analysis procedures. Therefore,
using the proposed technique one may estimate the true
biological (cell-to-cell) variability with respect to image-
derived measures. This is an important consequence of
the proposed technique, and to our knowledge, previously
proposed calibration methods do not provide such a capability.

One may postulate that non-specific fluorescence
(background) limits accuracy of measurement of specific
fluorescence in biological specimens to a greater degree than
does instrument noise. It should be noted that the presence of
non-specific fluorescence may impede accurate detection of
specific signals owing to two effects. First, non-uniform, non-
specific fluorescence (background) may obscure distribution
of specific fluorescence. Second, non-specific fluorescence
increases the total amount of photon noise, thus reducing
the SNR of specific fluorescence. Non-specific background
has to be characterized using an appropriate control in a
separate experiment. The presented method makes it possible
to estimate the contribution of such background to the SNR
of specific fluorescence.

The analysis of fluorescence intensity in time yields
systematic component of the intensity changes as one of

the algorithm outputs. This information may be used not
only to estimate instantaneous fluorescence signal but also
to reconstruct kinetics photobleaching. Characteristics of
photobleaching kinetics may be applied to optimize imaging
conditions and to restore faded images (Bernas et al.,
2004). One may also use photobleaching to correct non-
uniform microscope illumination (Van Den Doel et al., 1998;
Zwier et al., 2004) to resolve fluorochromes with similar
spectral properties (Brakenhoff et al., 1994) or to standardize
excitation intensity in a fluorescence microscope (Zwier et al.,
2004).

Another consequence of the performed statistical intensity
analysis is the fact that segmentation with respect to the
statistically significant levels produces images characterized by
onlyafewintensityvalues.Asaresult, theseimageswithsparse
histograms may be represented using fewer bits than required
by nominal intensity resolution. Hence one may postulate
that efficient compression of the images may be obtained
using histogram-packing techniques based on the proposed
approach (Starosolski, 2005).
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Block diagram of algorithm for calculation of significant
intensity levels.
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