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ABSTRACT Modern microscopic techniques like high-content screening (HCS), high-through-
put screening, 4D imaging, and multispectral imaging may involve collection of thousands of
images per experiment. Efficient image-compression techniques are indispensable to manage these
vast amounts of data. This goal is frequently achieved using lossy compression algorithms such as
JPEG and JPEG2000. However, these algorithms are optimized to preserve visual quality but not
necessarily the integrity of the scientific data, which are often analyzed in an automated manner.
Here, we propose three observer-independent compression algorithms, designed to preserve infor-
mation contained in the images. These algorithms were constructed using signal-to-noise ratio
(SNR) computed from a single image as a quality measure to establish which image components
may be discarded. The compression efficiency was measured as a function of image brightness and
SNR. The alterations introduced by compression in biological images were estimated using bright-
ness histograms (earth’s mover distance (EMD) algorithm) and textures (Haralick parameters).
Furthermore, a microscope test pattern was used to assess the effect of compression on the effective
resolution of microscope images. Microsc. Res. Tech. 69:1–9, 2006. VVC 2006 Wiley-Liss, Inc.

INTRODUCTION

Digital imaging based on light microscopy has
become an established technique in basic and applied
biological sciences. Modern applications like high-con-
tent screening (HCS), 4D imaging, and multispectral
imaging may involve collection of thousands of images
in one experiment. Hence, such data are analyzed in
automated ways and have to be stored using efficient
image-compression techniques. Several compression
algorithms have been developed for digital photogra-
phy and film. Among them, lossy compression algo-
rithms such as JPEG (ISO/IEC IS 10918-1) and
JPEG2000 (ISO/IEC 15444-1) offer the highest com-
pression ratios. However, this form of compression
introduces artifacts in the images. The distortions are
considered acceptable as long as the essential percep-
tual image quality is not decreased (Ebrahimi et al.,
2004, Grgic et al., 2003). In other words, models of
human vision are used to establish which image fea-
tures are significant and consequently should be pre-
served (Ebrahimi et al., 2004). This approach is not
particularly suitable for compression of microscopic
data, which are analyzed in an objective (often auto-
mated) manner. It has been established that these
lossy compression algorithms may introduce artifacts
that impact the integrity of the scientific data con-
tained within (Oh and Besar, 2003).

Instead, we propose three observer-independent
compression algorithms designed to preserve informa-
tion contained in the images. These algorithms rely on
determination of signal-to-noise ratio (SNR) computed
from a single image. The SNR parameter was used to

establish an appropriate compression level so as to pre-
serve the information contained in the image. Since
the SNR of microscopic images is a function of the
number of collected photons, photobleaching was used
to obtain images with various levels of fluorescence
intensity.

MATERIALS ANDMETHODS
Cell Culture and Confocal Microscopy

Transformed human fibroblasts MSU 1.1 were cul-
tured, stained with propidium iodide (PI), and imaged
using a Bio-Rad MRC 1024 confocal microscope as
described earlier (Bernas et al., 2004). Briefly, time se-
ries of fluorescent confocal images of equatorial sec-
tions through nuclei (thickness �1.1 lm) were collected
using alternately a low-intensity probing beam and a
high-intensity bleaching beam. No measurable bleach-
ing occurred when labels were excited using the prob-
ing beam alone. Images (512 3 512 pixels; 256 gray
levels) were collected using LaserSharp 3.2 software
(Bio-Rad). One image was a sum of 20 consecutive
scans. PI fluorescence was detected using photomulti-
pliers in photon-counting mode.

The array test pattern on a microscope test slide
(Richardson Technologies, Inc., Fig. 2) was imaged
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using the confocal system configured, as described ear-
lier (Bernas et al., 2004). The images of the pattern
(512 3 512 pixels; 256 gray levels) were registered at
the focal plane of maximum intensity using reflected
light (488 nm). Optical-section thickness was 0.7 lm
and the pixel size was 0.025 lm. One image was a sum
of 2 (small number of photons) or 30 (large number of
photons) consecutive scans.

SNR Estimation

SNR in the Spatial Domain. The noise level was
calculated using a previously described algorithm
(Amer et al., 2002). First, a set of eight directional
high-pass filters (3 3 3) was applied to an image. The
resulting images were summed, and 5 pixels having
the smallest sums were chosen to represent the homo-
genous image regions. The choice was restricted to the
regions where fluorescence intensity was at least 75%
of image maximum. The signal and noise were esti-
mated using the following formulae:

Ss ¼

P255
k¼0:75Imax

nkk

P255
k¼0:75Imax

nk

ð1Þ

where Ss is the average signal; k, the pixel intensity;
and nk, the number of pixels in the kth intensity class.

rs ¼

Pm
h¼1

r2
Bh

m
ð2Þ

where

r2
Bh ¼

P
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ðIði; jÞ � lBhÞ2

W 3 W

and rs is the noise, lBh, the average summed intensity
in the analyzed region, I(i, j), the summed intensity at
the (i, j) coordinates, W, the filter kernel size (3), and
m, the number of selected homogenous regions (5).

SNR in the Wavelet Domain. The majority of
noise present in microscope images is caused by
inherent variation in the arrival rate of photons
because of the quantum nature of light. Thus, Pois-
son noise modeling (Nowak and Baraniuk, 1999) was
combined with a bivariate wavelet shrinkage algo-
rithm (Sendur and Selesnick, 2002) to estimate SNR
in microscope imaging. Average signal intensity was
calculated from the resulting (denoised) images, using
Eq. (1) (for k ¼ 30). The absolute difference between
the denoised and initial images was used as an esti-
mate of the noise level, which was plotted against the
average signal intensity.

Image Compression

Downsampling in the Spatial Domain. Perform-
ance of an optical imaging system (including a micro-

scope) is determined by its optical transfer function
(OTF), (Pawley, 1995). The modulus of the OTF (modu-
lation transfer function, MTF) characterizes amplitude
(maximum to minimum intensity contrast) of a spatial
frequency transferred by the system. The MTF of a
confocal microscope used in further calculations is
given (at the focal plane, xy) by the approximate for-
mula below (Stokseth, 1969):

MTF ðfrÞ ¼ 4ð1� 0:69sex þ 0:0076s2ex þ 0:043s3exÞ
3 ð1� 0:69sem þ 0:0076s2em þ 0:043s3emÞ ð3Þ

where

sex ¼ kex
sinðaÞ fr and sem ¼ kem

sinðaÞ fr

and where fr is the radial spatial frequency, sex, sem are
normalized spatial frequencies for excitation (kex) and
emission (kem) wavelengths, respectively, and a is the
objective aperture half angle.

The MTF intensity (representing contrast) is plotted
versus the normalized spatial frequency (s) in Figure 1.
The resolution distance of the confocal microscope is
determined by the maximum spatial frequency that
can propagate through the system (i.e., the cutoff fre-
quency, fc). In the absence of noise (or when the SNR is
infinite) the cutoff frequency is the point at which the
MTF crosses the zero-intensity contrast line (Fig. 1).
Hence, the nominal (minimal) resolution distance (d) is
achieved.

d ¼ 0:5
k

n sinðaÞ ð4Þ

where

k ¼ 0:5
kexkemffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ex þ k2em

q

and where d is the resolution distance and n the index
of refraction

This nominal resolution is achieved if the SNR is
infinite, which is not the case in actual practice. There-
fore, the practical resolution was estimated by raising
the zero contrast line to match the noise, as shown in
Figure 1. Microscope images are registered with a
number of pixels sufficient to provide adequate
(Nyquist) sampling at the nominal resolution (i.e.,
infinite SNR). Hence, the ratio of practical to nominal
resolution was used to calculate the downsampling fac-
tor for these noisy images. The downsampling (bicubic
method) resulted in a lower number of pixels and thus
a smaller image size. Therefore, the first of the pro-
posed algorithms involves downsampling of the data-
sets collected using the sampling rates required to
fulfill the Nyquist criterion at infinite SNR to the size
determined by sampling rates required for practically
available SNRs.

Downsampling in the Intensity Domain. Owing
to the presence of noise in the images, only some inten-
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sity differences can be considered significant. The sec-
ond proposed compression algorithm relies on the fact
that the number of meaningful intensity levels is lower
than the nominal dynamic range (8 bits, 256 levels).
The number of levels in the images was reduced so that
the difference between the nearest was twice the noise
level. The following algorithm was used:

1. Calculate maximum fluorescence intensity smax in
the image.

2. Calculate noise (r) using appropriate function of flu-
orescence intensity r ¼ f(s) so that s ¼ smax � r.

3. Set all the pixel values between s�r and sþr to s.
4. Set smax ¼ s; if s > 1 go to 2.

Calculate the number of resulting intensity levels
and the number of bits necessary to represent them.

The downsampled image is consequently stored
using a lower than initial number of bits.

Wavelet Compression. The third proposed algo-
rithm involves execution of the wavelet shrinkage pro-
cedure, which causes removal of those wavelet coeffi-
cients that represent noise. Hence, the number of non-
zero coefficients in the wavelet transform of an image
decreases. One should note that this information-pre-
serving procedure constitutes the lossy step of the com-
pression algorithm (the noise is the lost component).
The data are then coded in lossless manner, using a
wavelet representation (format), which is part of
JPEG2000 specification (ISO/IEC 15444-1). Hence,
only the nonzero coefficients of an image wavelet trans-

form are stored. As a consequence, a decrease in the file
size is achieved when wavelet shrinkage is applied as a
preprocessing step for JPEG2000 coding.

Verification and Comparison

Intensity Distribution Comparison. Fluorescence
intensity distributions (histograms) were compared for
reference and compressed images using earth mover’s
distance (EMD) algorithm (Rumner et al., 2000).
Briefly, the minimal average (per pixel) intensity
change needed to transform histograms of a com-
pressed image into the respective histogram of an
uncompressed (reference) image was computed for
every such image pair.

Texture Characterization. Textures of the nuclei
in uncompressed and compressed images were com-
pared using Haralick texture parameters (Tuceryan
and Jain, 1998). The following parameters were
used: entropy (measure of information), contrast
(measure of magnitude of intensity changes), and
correlation (measure of linearity of intensity
changes). These parameters were calculated in the
areas where the fluorescence intensity was higher
than that of the background (30). Eight bits of
dynamic range were used in calculations carried out
for a 5-pixel distance.

Fidelity of Pattern Reproduction. Artifacts intro-
duced by image compression were estimated using a
test slide containing horizontal and vertical array pat-
terns (Fig. 2). The patterns were comprised of bars
0.250, 0.125, or 0.100 lm thick. Intensity profiles (3-
pixel width) were measured from images of the pat-
terns registered with either large or small numbers of
photons. The absolute contrast between the profile

Fig. 1. Influence of noise on the cutoff frequency of the microscope
MTF (continuous black line). The nominal cutoff frequency (s ¼ 2 in
normalized optical units) is estimated in the absence of noise at zero
contrast level. Frequency-independent noise (20%, gray dashed line)
is introduced by imposing a lowest limit to the contrast. The practical
cutoff frequency is calculated at the point where the MTF crosses this
minimum contrast level.

Fig. 2. Grating array test pattern. The black bars indicate the
reflective (aluminum-covered) areas of the specimen, whereas regions
transparent to the light are shown in white. The dimensions for each
column are shown as t/c, where t is the thickness of each bar and c is
the center-to-center spacing between adjacent bars (in lm).
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minima and maxima was calculated using the formula:

where Ca is the absolute contrast; p, the index of the
profile point; min, the first profile point; max, the last
profile point; s, the profile shift (equal to the thickness
of one or three array bars); and I, the intensity.

The normalized contrast was calculated for the com-
pressed images using the formula:

Cr ¼ Ccm
a

Cnoc
a

ð6Þ

where Cr is the relative contrast; Ccm
a , the absolute con-

trast for a compressed image; and Cnoc
a , the absolute

contrast for its noncompressed counterpart.
Hence, the relative contrast was equal to unity if no

artifacts were introduced by a compression algorithm.

RESULTS
Dependence of Noise on Fluorescence Intensity

Changes in fluorescence intensity were followed by
changes in the noise level, calculated using both spa-
tial-domain (Fig 3A) and wavelet-based (Fig. 3B) algo-

Ca ¼

Pp¼max

p¼min

Ip � Ipþs

�� ��

max�min
ð5Þ

Fig. 3. Dependence of the noise on the average fluorescence inten-
sity. The noise was estimated in spatial (A) and wavelet (B) domains.
The dependence was described phenomenologically using power func-
tion of the signal (gray line).

TABLE 1. Dependence of the noise (r) on the fluorescence intensity (I)

Noise estimation method Noise function

Spatial r ¼ �0.73 þ 1.13 3 I0.54

Wavelet r ¼ �2.91 þ 2.00 3 I0.42

Fig. 4. Effects of compression of an image of PI-stained nuclei (A)
with intensity downsampling using spatial (B) and wavelet (C) noise
models, spatial downsampling (D), and wavelet shrinkage (E). File
sizes in kilobytes (kb) are indicated. Bar: 5 lm. [Color figure can be
viewed in the online issue, which is available at www.interscience.
wiley.com.]
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rithms. The noise could be modeled using a square-root
function of fluorescence intensity in both cases (Figs.
3A and 3B, Table 1). Furthermore, both methods gave
comparable noise levels for a given fluorescence inten-
sity, indicating that noise constitutes a significant
part of image data. Hence, one may postulate that only
part of image data constitutes information. Three

Fig. 5. Influence of fluores-
cence intensity on the compression
efficiency of images of PI-stained
nuclei. The images were com-
pressed by intensity downsam-
pling using spatial (A) and wave-
let (B) noise models, by spatial
downsampling (C), and by wavelet
shrinkage (D).

Fig. 6. Overall compression efficiency of intensity downsampling
using spatial and wavelet noise models, spatial downsampling, and
wavelet shrinkage. Data range indicated with bars, 10th and 90th
percentiles with gray boxes, and median compression ratios with ver-
tical lines.

TABLE 2. Alterations of fluorescence intensity distributions
(histograms) in compression, as measured using EMD. Data are

expressed as the average 6 standard deviation

Compression method EMD

Intensity downsampling (spatial noise) 5.52 6 0.66
Intensity downsampling (wavelet noise) 5.17 6 0.67
Spatial downsampling 1.66 6 0.28
Wavelet shrinkage 1.51 6 0.24

5COMPRESSION OF FLUORESCENCE MICROSCOPY IMAGES



image-compression techniques described in the Materi-
als and Methods section attempt to exploit this redun-
dancy.

Performance of Wavelet-Shrinkage, Spatial,
and Intensity Downsampling

Biological Images. A set of fluorescence images of
PI-stained nuclei was compressed using the three pro-
posed algorithms (see Materials and Methods), as illus-
trated in Figure 4. It should be noted that no gross arti-
facts were generated and efficient compression was
achieved. These two aspects were studied in detail
using a set of 470 images containing various numbers
of nuclei and characterized by different intensity
levels.

The compression ratio of all three algorithms in-
creased with decreasing fluorescence intensity for all
the algorithms (Fig. 5). It should also be noted that this
dependence was more pronounced for algorithms
where wavelet-based noise estimation was used (Figs.
5B and 5D), than for those involving spatial-based
(Figs. 5A and 5C) noise estimation. The median com-
pression efficiency increased in the following order:

wavelet shrinkage < intensity downsampling < spatial
downsampling (Fig. 6). Algorithms based on noise esti-
mation in the spatial domain exhibited more variabil-
ity in compression rates compared with wavelet-based
routines. Nonetheless, all the proposed algorithms pro-
duced images significantly smaller than that of raw
datasets encoded using lossless JPEG2000. Obviously,
the images can be compressed further by applying
JPEG2000 lossless encoding to the denoised or down-
sampled files.

The compressed images were compared quantita-
tively with their uncompressed counterparts with
respect to the intensity distribution and texture. Aver-
age EMD (see Materials and Methods) is small for
wavelet compression and spatial downsampling, indi-
cating that no significant changes were introduced
(Table 2). More pronounced changes were detectable in
the histograms of images subjected to intensity down-
sampling, which is a direct consequence of the reduc-
tion in the number of intensity levels.

Comparison of the Haralick texture parameters
entropy, correlation, and contrast at the 5-pixel dis-
tance (Fig. 7) between compressed and uncompressed
images indicates that microscopically resolved details

Fig. 7. Influence of compres-
sion on textures in the images of
PI-stained nuclei, determined using
Haralick parameters entropy (A),
correlation (B) and contrast (C).
The images were compressed by
intensity downsampling using spa-
tial (circles) and wavelets (squares)
noise models, by spatial downsam-
pling (triangles up), and by wave-
let shrinkage (triangles down).
10% randomly chosen images rep-
resenting sets are indicated using
black symbols, whereas the whole
sets are depicted as gray areas.
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Fig. 8. Influence of compression on images of the array test pat-
tern registered with a large number of photons (average of 72.8/pixel).
The fidelity of reproduction of the test pattern was estimated using
relative contrast between bright and the dark bars (see Materials and
Methods). The contrast was calculated shifting the pattern with
respect to itself by one bar width. The respective widths were
0.100 lm (A), 0.125 lm (B), and 0.250 lm (C). The following adaptive
compression methods were analyzed: wavelet denoising (slash pat-
tern), spatial downsampling (backslash pattern), intensity downsam-
pling using wavelet (oblique grid), and spatial (horizontal stripes)
noise models. Effects of compression using JPEG (vertical stripes)
and JPEG2000 (vertical grid) are shown for comparison.

Fig. 9. Influence of compression on images of the array test pat-
tern registered with a small number of photons (average of 4.1/
pixel). The fidelity of reproduction of the test pattern was esti-
mated using relative contrast between bright and dark bars (see
Materials and Methods). The contrast was calculated shifting the
pattern with respect to itself by one-bar width. The respective
widths were 0.100 lm (A), 0.125 lm (B), and 0.250 lm (C). The
following adaptive compression methods were analyzed: wavelet
denoising (slash pattern), spatial downsampling (backslash pat-
tern), intensity downsampling using wavelet (oblique grid), and
spatial (horizontal stripes) noise models. Effects of compression
using JPEG (vertical stripes) and JPEG2000 (vertical grid) are
shown for comparison.



were only slightly affected. Intensity downsampling
did lower the entropy (which is a measure of informa-
tion). On the other hand, spatial downsampling and
wavelet shrinkage resulted in an increase of correla-
tion, while contrast was decreased.

Microscope Test Patterns. Compressed images of
an array grid pattern (Fig. 2) were compared with their
noncompressed counterparts to estimate the influence
of the algorithms described here on the reproduction
fidelity of details of known size. These effects, quanti-
fied using contrast between the reflective and transpar-
ent regions of the patterns (see Materials and Meth-
ods), are shown in Figures 8 and 9. Wavelet shrinkage
did not introduce significant changes in the images of
the finest (0.100 lm) grating, as demonstrated by the
relative contrast close to unity (Figs. 8 and 9). Spatial
downsampling resulted in a marked decrease of this
parameter, which is an indicator of pattern blurring.
Intensity downsampling, JPEG, and JPEG2000 did not
introduce large distortion in the pattern imaged with
large number of photons (Fig. 8). However, these algo-
rithms did not preserve small details registered using
a small number of photons (Fig. 9). Changes in contrast
were manifested at both short (1 bar length, Figs. 8
and 9) and long pattern shifts (3 bar lengths, data
not shown). This indicates that the artifacts were
introduced into the whole pattern at regular intervals
(i.e., they were periodic). JPEG spatial downsampling,
intensity downsampling, and both JPEG variants
exhibited better reproduction fidelity in case of a
coarser (0.125 lm) array grating (Figs. 8B and 9B).
Nonetheless, intensity downsampling failed in accu-
rate reproduction of dim details. The best fidelity was
provided by wavelet shrinkage, as in the case of the fin-
est grating. The coarsest pattern was reproduced accu-
rately by all the algorithms analyzed (Figs. 8C and
9C). Inaccuracy was manifested only when the pattern
was registered with a small number of photons and
compressed using intensity downsampling with spatial
noise estimation.

DISCUSSION

The nature of the dependence of image noise on fluo-
rescence intensity indicates that the main noise
component was of photonic origin. This notion is
supported by the fact that similar noise levels were
estimated using spatial (total noise) and wavelet (pho-
tonic noise) methods. The noise constituted a signifi-
cant part of the total fluorescence intensity. Hence,
one may postulate that the image data contained sig-
nificant redundancy with regard to the information
content. This redundancy was exploited by the three
proposed methods to obtain better compression effi-
ciency than is offered by standard lossless compression
algorithms. As expected, the compression efficiency
increased with decreasing image brightness (i.e., de-
creasing SNR). Thus, the proposed algorithms are
actually adaptive to the amount of information present
in the images.

Compression using wavelet shrinkage and spatial
downsampling did not introduce significant changes to
fluorescence intensity distributions (histograms), as
indicated by a small EMD. Such changes were more
pronounced in the case of intensity downsampling. It

should be noted that these algorithms perform opera-
tions equivalent to histogram binning. Nonetheless,
the EMD in this case is small when compared with the
average intensity bin size. This fact indicates that the
binning was fine enough to represent the histogram in
a faithful manner.

Wavelet shrinkage and spatial downsampling did
not influence image texture entropy, whereas intensity
downsampling resulted in a small decrease for this
parameter, possibly because of nonuniform intensity
binning. Intensity downsampling did not affect the cor-
relation and contrast. The other two algorithms
resulted in a slight increase in the correlation, while
the contrast was slightly decreased. It should also be
noted that these two techniques made use of correla-
tion of fluorescence intensity between pixels. Nonethe-
less, in general, we believe that none of the proposed
algorithms significantly altered even the smallest
details that could be resolved with the fluorescence
microscopy employed here. Thus, the scientific integ-
rity, as opposed to the ‘‘image presentation,’’ was main-
tained.

Compression using wavelet shrinkage did not intro-
duce any artifacts to the images of periodic grating
arrays. The response of an imaging system to such pat-
terns is an estimate of the MTF. The finest of the pat-
terns (bar thickness, 0.100 lm) was characterized by a
spatial frequency of 5.0 lm�1, which was close to the
microscope cutoff frequency (5.7 lm�1). Therefore, one
may claim that wavelet shrinkage does not impair res-
olution of microscope imaging. Intensity downsampling
and both JPEG variants distorted dim details and to a
lesser extent bright details at this high spatial fre-
quency. On the other hand, spatial downsampling
resulted in blurring of the finest details. One should
note, however, that the transfer efficiency decreases as
spatial frequencies approach the cutoff (Fig. 1). Thus,
the frequencies close to the cutoff constitute only a
small fraction of the energy that is contained in the
microscopic images. Consequently, it is conceivable
that distortions of nuclei images caused by MTF altera-
tion at these high frequencies might be nondetectable.
Grating arrays characterized by lower spatial frequen-
cies were reproduced accurately in the images com-
pressed using all the algorithms except intensity down-
sampling. Use of these methods resulted in inaccura-
cies when the intensity level was low. It is not
surprising because relative error (which results from
the downsampling) increases as the intensity de-
creases.

The actual compression efficiency is lower than that
theoretically predicted for spatial and intensity down-
sampling. One may envisage that an alternative
image file structure (i.e., allowing arbitrary choice of
dynamic range, e.g., 5-bit) could improve the practical
performance of downsampling-based methods. No such
predictions could be made for wavelet shrinkage. How-
ever, we believe that the construction of a JPEG2000-
compliant routine, which would utilize the denoised
wavelet image representation, could result in an in-
crease of the compression ratio, while maintaining the
essential integrity of the inherent scientific data. Such
a solution may well be attractive to those requiring 21
CFR part 11 compliance for their data storage and
compression.
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