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ABSTRACT 

Biological microparticles scatter light in all directions when illuminated. The complex scatter pattern is dependent on 
particle size, shape, refraction index, density, and morphology. Commercial flow cytometers allow measurement at two 
nominal angles (2°≤ θ1 ≤ 20° and 70°≤ θ2 ≤ 110°) of scattered light intensity from individual microparticles with a speed 
varying from 10 to 10000 particles per second. The choice of angle is dictated by the fact that scattered light in the 
small-angle region is primarily influenced by cell size and refractive index, whereas side scatter intensity is related to the 
granularity of cellular structures. Obviously, these rudimentary measurements cannot be used to separate populations of 
cells of similar shape, size, or structure. Hence, there have been several attempts in flow cytometry to measure the entire 
scatter patterns. However, the published concepts required use of unique custom-built flow cytometers and could not be 
applied to existing instruments. It was also not clear how much information about patterns is really necessary to separate 
various populations of cells present in a given sample. The presented work demonstrates application of pattern-
recognition techniques to classify particles on the basis of their discrete scatter patterns collected at just five different 
angles, and accompanied by the measurement of axial light loss. Our approach can be used with existing instruments and 
requires only the addition of a compact custom-built scatter-detector. Our analytical model of scatter of laser beams by 
individual bacterial cells suspended in a fluid was used to determine the location for scatter sensors. Experimental results 
were used to train the SVM-based pattern recognition system. It has been shown that information provided just by six 
scatter-related parameters was sufficient to recognize various bacteria with 90-99% success rate.  
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1. INTRODUCTION 
It has been demonstrated that information about forward scatter (2° ≤ θ1 ≤ 20°) and side scatter (70°≤ θ2 ≤ 110°) can be 
used to identify a number of cell subpopulations without the use of any additional information provided by fluorescence 
stains1-3. This was possible owing to the fact that forward-scattered light in the small-angle region (θ ≤ 2°) is primarily 
dependent on the cell size, and is mostly independent of its refractive index or shape4-6, whereas perpendicular light 
scatter is sensitive to small internal structures in cells and to refractive index changes.  

Researchers agree that full scatter patterns of bioparticles may contain much more information than forward scatter, 
perpendicular scatter, and extinction signals can reveal. Indeed, several papers published in the ’70s and early ’80s on 
complex applications of multi-angle scatter detection in flow involved measurement of the full 180° or 360° scatter 
patterns from single biological cells1,7-9. However, none of the early designs of multi-angle scatter detectors found its 

                                                           
*brajwa@purdue.edu; Purdue University Cytometry Laboratories, Bindley Bioscience Building, 1203 W. State Street. 
West Lafayette, IN 47907-2057; tel. (765) 494 0757 



way to commercial systems. Currently only a few research groups still actively investigate applications of multi-angle 
light-scatter analysis in flow10-14.  

The presented work demonstrates the application of pattern-recognition techniques to classify microbial particles on the 
basis of their scatter patterns accompanied by the measurement of axial light loss. Our approach differs from previous 
reports by the use of an analytical model of scatter of laser beams by individual bacterial cells suspended in a fluid to 
determine the optimal location for scatter sensors. In contrast to other reports which described direct use of collected 
scatter signals to characterize bioparticles, our method works in concert with a machine-learning system. The 
experimental results obtained from the known samples are used to train the support-vector machine, and subsequently 
samples containing mixtures of unknown particles are classified by the trained algorithm. It has been shown that 
information provided by just six scatter-related parameters was sufficient for a trained system to recognize various 
bacteria with a success rate above 90%. 

2. MATERIALS AND METHODS 
2.1. Bacterial cultures 

Four different non-pathogenic bacterial cultures of varying size and shape were selected for the experiments: 
Escherichia coli K12, Listeria innocua F4248, Bacillus subtilis ATCC 6633, and Enterococcus faecalis CG110. The 
cultures were grown in brain heart infusion (BHI) broth for 16-18h at 37°C, 140 rpm in a shaker incubator. The cultures 
were washed once and resuspended in sterile phosphate buffered saline (PBS), pH 7.6, before analysis. 

 

Figure 1. The scatter measurement system consists of four ring detectors 
and an axial light-loss detector that can be moved towards or away from the 
laser beam–particle intersection point to change the angles of measurement. 

2.2. Analytical model of scatter 

The mathematical model of scatter used in this work assumes that the particles (refractive index n=1.44) are in isolation 
in the sheath fluid (n=1.33), and the angular scatter distribution is calculated and integrated over the area of the forward-
scatter detector placed outside the sheath fluid. This assumption is valid if the particles are much smaller than the 
channel and if the laser beam (10µm x 80µm Gaussian) inside the channel is considerably larger than the particle. The 
bacterial cells are modeled as homogeneous particles with effective refractive indices using the Discrete Dipole 
Approximation (DDA). 

The discrete-dipole approximation method (DDA) was first formulated by Purcell and Pennypacker, who used it to study 
interstellar dust grains, and later studied by other researchers such as Draine, and Taubenblatt and Tran15-17. In DDA an 
arbitrarily shaped particle is treated as a three-dimensional assembly of dipoles (j = 1,….,N) on a cubic grid, located at 
positions rj. Each dipole is assigned a complex polarisability αi which can be computed from the complex refractive 
index of the bulk material and the number of dipoles in a unit volume18. The dipole moment or polarization at each 
dipole is related to the electric field by Pj=αjEto,j, where Pj is the dipole moment at the dipole ‘j’, Etot,j is the total electric 
field at dipole j, at rj. 

Following the notation of Draine19, the field Etot,j, at each dipole can be decomposed into the electrical field incident 
upon the features and the electric field contribution from the other interacting dipoles.  Hence, the electric field can then 



be represented as Etot,j=Einc,j+Edipole,j, where Edipole,j is the electric field contribution from the other N-1 dipoles, and Einc,j 
is the known incident field E0exp(ik·ri-iωt). Therefore Edipole,j can be expressed as: 
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is reduced to finding polarizations Pj that satisfy a system of equations: 
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These equations can be solved by iterations. By introducing a Green function, the method produces reliable results for 
extremely rough discretization grids such as 2.22 meshes per wavelength20. In the presented study the Quasi-Minimal 
Residual (QMR) method has been used to solve the problem.  Owing to the characteristics of the coefficient matrix, the 
convergence towards an accurate answer is dependent on scattering feature size and refractive index. 

The longer axes of the bacteria are assumed to be aligned with the axis of flow owing to the hydrodynamic forces in a 
flow cytometer.  Since polarization changes the scattering cross section noticeably, especially for long rod-like particles, 
the model employed takes into account incident laser beam polarization. The proper placing of the detectors was 
determined by the value of the distinguishability factor D, defined as the ratio of the difference in scattering cross section 
to the sum of scattering cross section of two different bacteria [ ]( ) ( ) ,

i
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represent different bacterial species. 

In order to predict the feasible classification success for the automated analysis system, the variability in scatter signal 
resulting from differences in refractive index and sizes of individual particles was considered in an extended scatter 
model. A normal distribution of size and refractive index was employed in the enhanced model for three species of 
bacteria (L. innocua, E. faecalis and, E. coli). The 1/e width of the normal distribution of refractive index was 0.033 with 
a mean of 1.44. The standard deviation for volume of the bacteria was assumed to be 5%.  

The overlap of the resultant modeled populations calculated for every pair of bacterial species in the measurement space 
was used as an estimate of the feasible classification success, for every two-class case (Table 1). 

2.3. Flow cytometry 

All the analyses were performed with a Cytomics FC500 flow cytometer (Beckman Coulter, Miami, FL) equipped with a 
488-nm air-cooled argon laser. The traditional scatter detector in the instrument was replaced by an enhanced detection 
system (Beckman Coulter) capable of measuring forward-scatter signals at four different angles (Figure 1). The scatter-
measurement system consists of four ring detectors and an axial light loss detector that can be moved towards or away 
from the laser beam–particle intersection point to change the angles of measurement. 

2.4. Classification using Support Vector Machines 

Support vector machine (SVM) algorithms allow for non-linear decision boundaries in the input space. SVMs are based 
on the concept of decision hyperplanes that define decision boundaries. A decision hyperplane is one that separates a set 
of objects having different class memberships. SVMs are able to construct hyperplanes in a multidimensional space that 
separates cases of different class labels. An optimal decision hyperplane is here defined as the linear decision function 
with maximal margin between the vectors of the two classes. It has been demonstrated that to construct such hyperplanes 
one has to take into account only a small amount of the training data, the so-called support vectors, which determine this 
margin21. For RbRb N ∈∈=+⋅ ,|000 wzw . which the optimal hyperplane, it has been shown that the weights w0 
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z in feature space. SVM is a linear classifier in the parameter space, but it is easily extended to a nonlinear classifier by 
mapping the space S={x} of the input data into a high-dimensional (possibly infinite-dimensional) feature space 
F={φ(x)}. If one chooses an adequate mapping φ, the data points become linearly separable or mostly linearly separable 
in the high-dimensional space, so that one can easily apply the structure risk minimization22. To avoid working in the 
potentially high-dimensional space F, one tries to pick a feature space in which the dot product can be evaluated directly 
using a nonlinear function in input space, i.e. by means of the kernel trick: κ(x1,x2) = 〈φ(x1), φ(x2)〉. Therefore, instead of 
making a non-linear transformation of the input vectors followed by dot-products with support vectors in feature space, 
one can first compare two vectors in input space, and then make a non-linear transformation of the value of the result23. 
A kernel can be also understood as a similarity measure between two observations. A large value for κ(x1,x2) indicates 
similar points, where smaller values indicate dissimilar points. Typical kernels include the linear kernel, κ(x1,x2) = x1

Tx2, 
the polynomial kernel, κ(x1,x2) = (x1

Tx2 + 1)d, or the RBF kernel, κ(x1, x2) = exp(-γ||x1−x2||2). It has been shown that all 
these kernels are functions of dot products24. 

Supervised classification was performed in this report using an implementation of a multi-class support vector machine 
based algorithm by Chih-Chung Chang and Chih-Jen Lin25,26.  

3. RESULTS AND DISCUSSION 
Measurements of forward and side scatter did not allow distinguishing between the microbial particles of Escherichia 
coli K12, Listeria innocua F4248, Bacillus subtilis ATCC 6633, and Enterococcus faecalis CG110. Figure 2 represents 
example of one of the experiments in which two samples containing E. faecalis and B. subtilis were analyzed using an 
unmodified commercial flow cytometer. The results have been scatter-plotted to demonstrate that the two populations 
completely overlap in the measurement space. 
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Figure 2. Scatterplot representing E. faecalis (circles) and B. subtilis (triangles) analyzed using an unmodified commercial flow 
cytometer. The results demonstrate that the two populations completely overlap in the measurement space. 1000 event have been 
plotted. 

An optimal location of the multi-angle detector has been determined using a computer model of light scatter based on 
DDA. Table 1 shows computed distinguishabilities for pairs of every two of the analyzed bacteria at the two sets of 
angles 7.8°, 11.3°, 17°, and 22.5° (Set I), and 4°, 5.8°, 8.7°, and 11.5° (Set II). These two sets of angle represent two 
positions of the multi-angle detector.  As Figure 3 demonstrates, Set I (represented by light-gray lines) offered better 
distinguishability than Set II (dark-grey lines) for most of the analyzed two-component mixtures of bacteria. Table 2 
shows theoretically estimated classification rates for the designed system using angle Set I. 
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Figure 3. The nominal variation of average differential scattering cross section (dCsc/dω) with forward angle for the four bacteria 
species. 

 
 E. coli L. innocua B. subtilis E. faecalis 

 I II I II I II I II 

E. coli   1.88 2.82 2.15 1.49 1.34 0.67 

L. innocua 1.88 2.82   2.11 2.14 2.42 3.12 

B. subtilis 2.15 1.49 2.11 2.14   2.25 2.01 

E. faecalis 1.34 0.67 2.42 3.12 2.25 2.01   

Table 1. Distinguishabilities calculated for scatter measurement at nominal 7.8°, 11.3°, 17°, and 22.5° (Set I) and 4°, 5.8°, 8.7°, and 
11.5° (Set II). 

Collected scatter signals at the four forward angles, side scatter, and axial light-loss measure for each particle from every 
group of bacteria formed multidimensional data vectors describing all the bioparticles. The classification problem was 
then to determine the species of analyzed particles on the basis of these data vectors. Plotting the results of all the 
measured angles of scatter and axial light loss, as well as visualization of principal components, did not allow for clean 
manual gating to separate the subpopulations (data not shown).  
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Figure 4. Canonical plot showing an example of LDA (A) and SVM (B) automated classifications of B. subtilis and E. faecalis. 1000 
events have been plotted. Legend: black “■” – correctly classified events, gray “+” – missclassfied events. 



 

Automated classification was performed by two supervised methods: linear discriminant analysis (LDA) and support-
vector machine algorithm (SVM) (See Figure 4 A, B). The 5x2 cross-validation and bootstrap algorithms were used to 
determine the classification success. Table 2 summarizes the results. 

 E. coli L. innocua B. subtilis E. faecalis

 R E R E R E R E 

E. coli - - 86.30% 95.8% 99.10% - 68.70% 77.1% 

L. innocua 86.30% 95.8% - - 99.60% - 81.60% 95.6% 

B. subtilis 99.10% - 99.60% - - - 98.50% - 

E. faecalis 68.70% 77.1% 81.60% 95.6% 98.50% - - - 

Table 2. Average real (R), and estimated (E) classification success rates for six-parameter (7.8°, 11.3°, 17.7°, 22.5°, 90°, and axial 
light loss) scatter system employing SVM classifier. 

4. CONLUSIONS 
The results obtained in the presented study clearly demonstrate that scatter signals alone can be successfully used to 
automatically recognize various species of bacteria, provided that a sufficient training sample is available. The data 
showed also that whereas manual gating using multi-parameter scatter plots or utilizing a linear classifier did not provide 
satisfactory results, the SVM-based classification produced a remarkably high success rate (See Figure 4 and Table 2). 

Comparison of the classification success with the estimated distinguishabilities shows a high level of agreement except 
for one of the classification cases for each set of angles. This is encouraging, considering the fact that the model does not 
take into account the intra-population variance in size and refractive indices. The classification success predicted by the 
extended model has not been reached, suggesting that instrument noise seriously limits the feasible classification rates. 
Despite that, the obtained rates demonstrate that label-free classification of microorganisms is indeed feasible, even with 
a system collecting a very limited number of scatter parameters. This, in turn, suggests that simple multi-angle scatter 
detectors may find a niche in systems where fluorescent labels cannot be use, e.g. on-line flow cytometry monitoring of 
bioreactors. 
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